Top Banner
MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013
20

MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

Dec 17, 2015

Download

Documents

Spencer Austin
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

MTR Project ACCENT

T.O. van Staveren, NRG

A.J. de Koning, NRG

M. Davies, Frazer Nash Consultancy

September 18, 2013

Page 2: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

2

MTR Project ACCENT

• Goal• Status of project• Design• Samples• Irradiation• PreIE and PIE program

Page 3: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

3

MTR Project ACCENT

• MTR: Materials Test Reactor• ACCENT: AGR Carbon Creep experimENT• Goal: Provide irradiation creep data on

(radiolytically oxidised) graphite– Input to models that predict graphite property changes

for EDF Energy Advanced Gas-cooled Reactors

Page 4: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

4

Plan

• Irradiate graphite samples at high temperature under stress in the High Flux Reactor in Petten

• Perform multiple irradiation and post-irradiation characterisation stages to determine graphite properties at different dpa values

• Load virgin and radiolytically oxidised samples to determine irradiation creep behaviour at low / high neutron dose and weight loss

Page 5: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

5

Project status

Conceptual design

Detailed design

Sample machining Pre-characterisation

Assembly and commissioning

Phase I Irradiation: 1 cycle with ~0.7 dpa

increment

Phase I Post-irradiation characterisation

Assembly and commissioning

Phase II Irradiation: 6 cycles with ~4 dpa

increment

Page 6: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

6

Project status

Program on schedule: Start of design phase: mid-2012 Machining of radiolytically oxidised

specimens: February 2013 PreIE: Spring 2013 Module assembly: June 2013 Phase I Irradiation: July 2013 PIE: August / September 2013• Assembly Phase II: October 2013• Phase II irradiation: November 2013

Page 7: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

7

Design

• Samples loaded in 6 modules• Instrumented holder for

modules with 24 thermocouples

• Sample target temperature: 420°C

• 10 MPa on stressed samples applied by gas filled bellows

• Samples under inert atmosphere

Page 8: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

8

• Instrumented holder with 24 thermocouples → online temperature monitoring

• Temperature controlled by He/Ne gas mixture in 2nd containment

• SiC temperature monitors → post mortem temperature analysis of samples and bellows

Temperature control

Page 9: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

9

Bellow system

• 4 samples per module• 2 samples under stress• Helium gas filled bellows• 10 MPa reached when

experiment is at temperature– Irradiation temperature at

bellows determines load on samples

• Filler and pressure parts for articulation and heat isolation

600mm

750mm

75mm

CL core 3

00mm

Bellow

Pressure part

Sample

Page 10: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

10

Samples

• 24 samples in 6 modules– Two paired samples per module– One sample in a pair is loaded to 10 MPa

• Target samples give ‘3 Experiments’– Virgin Gilso graphite → ‘Experiment 2’– Radiolytically oxidised graphite at intermediate neutron

dose and weight loss (ex-Blackstone) → ‘Experiment 3’– Radiolytically oxidised graphite at high neutron dose

and weight loss (ex-AGR, ex-Blackstone) → ‘Experiment 1’

Page 11: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

11

Samples at start of Phase I

dpa

Dim

ensi

onal

cha

nge

(%)

2

Experiment 2: virgin graphite

3

Experiment 3: radiolytically oxidised graphite, ex-Blackstone

1Experiment 1: radiolytically oxidised graphite, ex-AGR and ex-Blackstone

Page 12: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

Sample geometries

12

Experiment 1• Sample machined from flexure tested beams,

ex-AGR, ex-Blackstone• 6 x 6 x 5.5 mm• Max. weight loss 37%

Experiment 2• Virgin samples• 12.5 x 6 x 5.5 mm• Laser engraving on one side

Experiment 3• Samples machined from cylinders irradiated in

Blackstone Phase I• 11.8 x 6 x 5.5 mm• Max. weight loss 8%

Page 13: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

Sample machining (EXP 1)

• Samples radiolytically oxidised in AGR and High Flux Reactor Petten Blackstone irradiation

• Flexural tested beams, fracture surface ground back to give specimen pairs

• Marking of specimen needed to guarantee maintaining orientation relationship: grinding of corner

13

Page 14: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

Pre-characterisation

14

Pre-stress testing

Photography Dimensions Mass CTE (3 directions) DYM (3 directions) Electrical resistivity ‘Standard’ XRD XRD texture Tomography

10 MPa

Loading samples to 10 MPa

DIC data recording

Photography Dimensions Mass CTE (3 directions) DYM (3 directions) Electrical resistivity ‘Standard’ XRD XRD texture Tomography

Before pre-stress testing

After pre-stress testing

Page 15: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

15

Assembly

• Module parts and radioactive samples assembled in glove box

• Bellows pressurised with helium• Orbital welding of modules• Leak tightness testing

Page 16: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

16

Phase I irradiation

• Irradiation from 13 July to 6 August 2013• dpa target reached: 0.7 dpa• Stable temperatures throughout irradiation• Analysis SiC temperature monitor ongoing

– Anneal SiC monitors at increasing temperatures– Measure electrical resistivity of SiC after each

annealing step

Page 17: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

17

Dismantling

• Modules punctured to check for leaking of modules and bellows during irradiation

• Modules opened with milling machine in hot cell• Samples successfully retrieved from modules in

hot cell

Page 18: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

18

PIE

• Started beginning of August• End: last week • Measurements:

– Photography– Dimensions– Mass– CTE– DYM– Electrical resistivity– ‘Standard’ XRD– XRD texture– Tomography

• Results…

Page 19: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

19

Next steps

• Continue assessment of Phase I irradiation– Analysis of SiC temperature monitor sets– Analysis of neutron dosimetry sets

• Report post-irradiation characterisation measurements

• Assemble ACCENT Phase II irradiation experiment

• Start Phase II irradiation

Page 20: MTR Project ACCENT T.O. van Staveren, NRG A.J. de Koning, NRG M. Davies, Frazer Nash Consultancy September 18, 2013.

20

Conclusions

• Successfull machining and pre-characterisation of radiolytically oxidised graphite samples

• Phase I irradiation completed:• dpa target reached• Stable temperatures throughout irradiation• Confirmation of irradiation temperature on-going

• Successfull completion of PIE measurements• Project on schedule for Phase II irradiation