Top Banner

of 42

MRI 1

Apr 07, 2018

Download

Documents

Abhishek Sinha
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 MRI 1

    1/42

    Magnetic resonance imaging

    SagittalMR image of the knee

    Para-sagittal MRI of the head, with aliasing artifacts (nose and forehead appear at the back of the head)

    Magnetic resonance imaging (MRI), nuclear magnetic resonance imaging (NMRI), or magnetic

    resonance tomography (MRT) is amedical imagingtechnique used inradiologyto visualize detailed

    internal structures. The goodcontrastit provides between the differentsoft tissuesof the body make it

    especially useful inbrain,muscles,heart, andcancercompared with othermedical imagingtechniques

    such ascomputed tomography(CT) orX-rays.

    Unlike CT scans or traditional X-rays MRI uses noionizing radiation. Instead it uses a

    powerfulmagneticfield to align themagnetizationof someatomsin the body, then usesradio

    frequencyfields to systematically alter the alignment of this magnetization. This causes the nuclei to

    produce a rotating magnetic field detectable by the scannerand this information is recorded to construct

    an image of the scanned area of the body.[1]:36

    http://en.wikipedia.org/wiki/Sagittalhttp://en.wikipedia.org/wiki/Sagittalhttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Radiologyhttp://en.wikipedia.org/wiki/Radiologyhttp://en.wikipedia.org/wiki/Radiologyhttp://en.wikipedia.org/wiki/Contrast_(vision)http://en.wikipedia.org/wiki/Contrast_(vision)http://en.wikipedia.org/wiki/Contrast_(vision)http://en.wikipedia.org/wiki/Soft_tissueshttp://en.wikipedia.org/wiki/Soft_tissueshttp://en.wikipedia.org/wiki/Soft_tissueshttp://en.wikipedia.org/wiki/Neurologyhttp://en.wikipedia.org/wiki/Neurologyhttp://en.wikipedia.org/wiki/Neurologyhttp://en.wikipedia.org/wiki/Human_musculoskeletal_systemhttp://en.wikipedia.org/wiki/Human_musculoskeletal_systemhttp://en.wikipedia.org/wiki/Human_musculoskeletal_systemhttp://en.wikipedia.org/wiki/Cardiovascularhttp://en.wikipedia.org/wiki/Cardiovascularhttp://en.wikipedia.org/wiki/Cardiovascularhttp://en.wikipedia.org/wiki/Oncologyhttp://en.wikipedia.org/wiki/Oncologyhttp://en.wikipedia.org/wiki/Oncologyhttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Medical_radiographyhttp://en.wikipedia.org/wiki/Medical_radiographyhttp://en.wikipedia.org/wiki/Medical_radiographyhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Magnetismhttp://en.wikipedia.org/wiki/Magnetismhttp://en.wikipedia.org/wiki/Magnetismhttp://en.wikipedia.org/wiki/Nuclear_magnetic_momenthttp://en.wikipedia.org/wiki/Nuclear_magnetic_momenthttp://en.wikipedia.org/wiki/Nuclear_magnetic_momenthttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-squires-0http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-squires-0http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-squires-0http://en.wikipedia.org/wiki/File:Structural_MRI_animation.ogvhttp://en.wikipedia.org/wiki/File:MR_Knee.jpghttp://en.wikipedia.org/wiki/File:Structural_MRI_animation.ogvhttp://en.wikipedia.org/wiki/File:MR_Knee.jpghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-squires-0http://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Nuclear_magnetic_momenthttp://en.wikipedia.org/wiki/Magnetismhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Medical_radiographyhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Oncologyhttp://en.wikipedia.org/wiki/Cardiovascularhttp://en.wikipedia.org/wiki/Human_musculoskeletal_systemhttp://en.wikipedia.org/wiki/Neurologyhttp://en.wikipedia.org/wiki/Soft_tissueshttp://en.wikipedia.org/wiki/Contrast_(vision)http://en.wikipedia.org/wiki/Radiologyhttp://en.wikipedia.org/wiki/Medical_imaginghttp://en.wikipedia.org/wiki/Sagittal
  • 8/3/2019 MRI 1

    2/42

    Magnetic resonance imaging is a relatively new technology. The first MR image was published in

    1973[2][3]

    and the first cross-sectional image of a living mouse was published in January 1974.[4]

    The first

    studies performed on humans were published in 1977.[5][6]

    By comparison, the first humanX-rayimage

    was taken in 1895.

    Contents

    [hide]

    1 How MRI works

    2 Applications

    o 2.1 Basic MRI scans 2.1.1 T1-weighted MRI 2.1.2 T2-weighted MRI 2.1.3 T*2-weighted MRI 2.1.4 Spin density weighted MRI

    o 2.2 Specialized MRI scans 2.2.1 Diffusion MRI 2.2.2 Magnetization Transfer MRI 2.2.3 Fluid attenuated inversion recovery (FLAIR) 2.2.4 Magnetic resonance angiography 2.2.5 Magnetic resonance gated intracranial CSF dynamics (MR-GILD) 2.2.6 Magnetic resonance spectroscopy 2.2.7 Functional MRI 2.2.8 Real-time MRI

    o 2.3 Interventional MRIo 2.4 Radiation therapy simulation

    2.4.1 Current density imaging 2.4.2 Magnetic resonance guided focused ultrasound 2.4.3 Multinuclear imaging 2.4.4 Susceptibility weighted imaging (SWI) 2.4.5 Other specialized MRI techniques

    o 2.5 Portable instrumentso 2.6 MRI versus CTo 2.7 Economics of MRI

    3 Safety

    o 3.1 Magnetic fieldo 3.2 Radio frequency energy

    http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur-1http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur-1http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur-1http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur2-3http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur2-3http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur2-3http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-damadian-4http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-damadian-4http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-damadian-4http://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#How_MRI_workshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#How_MRI_workshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Applicationshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Applicationshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Basic_MRI_scanshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Basic_MRI_scanshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T1-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T1-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T1-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T1-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T.2A2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T.2A2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Spin_density_weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Spin_density_weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Specialized_MRI_scanshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Specialized_MRI_scanshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Diffusion_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Diffusion_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetization_Transfer_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetization_Transfer_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Fluid_attenuated_inversion_recovery_.28FLAIR.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Fluid_attenuated_inversion_recovery_.28FLAIR.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_angiographyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_angiographyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_gated_intracranial_CSF_dynamics_.28MR-GILD.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_gated_intracranial_CSF_dynamics_.28MR-GILD.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Functional_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Functional_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Real-time_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Real-time_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Interventional_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Interventional_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radiation_therapy_simulationhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radiation_therapy_simulationhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Current_density_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Current_density_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_guided_focused_ultrasoundhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_guided_focused_ultrasoundhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Multinuclear_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Multinuclear_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Susceptibility_weighted_imaging_.28SWI.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Susceptibility_weighted_imaging_.28SWI.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Other_specialized_MRI_techniqueshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Other_specialized_MRI_techniqueshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Portable_instrumentshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Portable_instrumentshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#MRI_versus_CThttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#MRI_versus_CThttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Economics_of_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Economics_of_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Safetyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Safetyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_fieldhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_fieldhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radio_frequency_energyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radio_frequency_energyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radio_frequency_energyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_fieldhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Safetyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Economics_of_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#MRI_versus_CThttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Portable_instrumentshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Other_specialized_MRI_techniqueshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Susceptibility_weighted_imaging_.28SWI.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Multinuclear_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_guided_focused_ultrasoundhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Current_density_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radiation_therapy_simulationhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Interventional_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Real-time_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Functional_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_gated_intracranial_CSF_dynamics_.28MR-GILD.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetic_resonance_angiographyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Fluid_attenuated_inversion_recovery_.28FLAIR.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Magnetization_Transfer_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Diffusion_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Specialized_MRI_scanshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Spin_density_weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T.2A2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T2-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#T1-weighted_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Basic_MRI_scanshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Applicationshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#How_MRI_workshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaginghttp://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-damadian-4http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-damadian-4http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur2-3http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur-1http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-lauterbur-1
  • 8/3/2019 MRI 1

    3/42

    o 3.3 Peripheral nerve stimulation (PNS)o 3.4 Acoustic noiseo 3.5 Cryogenso 3.6 Contrast agentso 3.7 Pregnancyo 3.8 Claustrophobia and discomforto 3.9 Guidanceo 3.10 The European Physical Agents Directive

    4 Three-dimensional (3D) image reconstruction

    o 4.1 The principleo 4.2 3D rendering techniqueso 4.3 Image segmentation

    5 2003 Nobel Prize

    6 See also

    7 References

    8 Further reading

    9 External links

    -How MRI works

    The body islargely composed of water molecules. Each water molecule has

    twohydrogennucleiorprotons. When a person goes inside the powerfulmagnetic fieldof the scanner,

    themagnetic momentsof some of these protons changes, and aligns with the direction of the field.

    In an MRI machine a radio frequency transmitter is briefly turned on, producing anelectromagnetic field.

    The photons of this field have just the right energy, known as the resonance frequency, to flip thespinof

    the aligned protons in the body. As theintensityand duration of application of the field increase, more

    aligned spins are affected. After the field is turned off, the protons decay to the original spin-down state

    and the difference in energy between the two states is released as a photon. It is these photons that produce

    the electromagnetic signal that the scanner detects. The frequency the protons resonate at depends on the

    strength of the magnetic field. As a result ofconservation of energy, this also dictates the frequency of the

    released photons. The photons released when the field is removed have an energyand therefore a

    frequencydue to the amount of energy the protons absorbed while the field was active.

    It is this relationship between field-strength and frequency that allows the use of nuclear magnetic

    resonance for imaging. Additional magnetic fields are applied during the scan to make the magnetic field

    strength depend on the position within the patient, in turn making the frequency of the released photons

    dependent on position in a predictable manner. Position information can then be recovered from the

    resulting signal by the use of aFourier transform. These fields are created by passing electric currents

    http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radio_frequency_energyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Radio_frequency_energyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Peripheral_nerve_stimulation_.28PNS.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Peripheral_nerve_stimulation_.28PNS.29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Acoustic_noisehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Acoustic_noisehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Cryogenshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Cryogenshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Contrast_agentshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Contrast_agentshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Pregnancyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Pregnancyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Claustrophobia_and_discomforthttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Claustrophobia_and_discomforthttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Guidancehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Guidancehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#The_European_Physical_Agents_Directivehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#The_European_Physical_Agents_Directivehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Three-dimensional_.283D.29_image_reconstructionhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Three-dimensional_.283D.29_image_reconstructionhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#The_principlehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#The_principlehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#3D_rendering_techniqueshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#3D_rendering_techniqueshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Image_segmentationhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Image_segmentationhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#2003_Nobel_Prizehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#2003_Nobel_Prizehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#See_alsohttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#See_alsohttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Referenceshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Referenceshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Further_readinghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Further_readinghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#External_linkshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#External_linkshttp://en.wikipedia.org/wiki/Body_waterhttp://en.wikipedia.org/wiki/Body_waterhttp://en.wikipedia.org/wiki/Body_waterhttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Protonhttp://en.wikipedia.org/wiki/Protonhttp://en.wikipedia.org/wiki/Protonhttp://en.wikipedia.org/wiki/Magnetic_fieldhttp://en.wikipedia.org/wiki/Magnetic_fieldhttp://en.wikipedia.org/wiki/Magnetic_fieldhttp://en.wikipedia.org/wiki/Magnetic_dipole_momenthttp://en.wikipedia.org/wiki/Magnetic_dipole_momenthttp://en.wikipedia.org/wiki/Magnetic_dipole_momenthttp://en.wikipedia.org/wiki/Electromagnetic_fieldhttp://en.wikipedia.org/wiki/Electromagnetic_fieldhttp://en.wikipedia.org/wiki/Electromagnetic_fieldhttp://en.wikipedia.org/wiki/Spin_(physics)http://en.wikipedia.org/wiki/Spin_(physics)http://en.wikipedia.org/wiki/Spin_(physics)http://en.wikipedia.org/wiki/Intensity_(physics)http://en.wikipedia.org/wiki/Intensity_(physics)http://en.wikipedia.org/wiki/Intensity_(physics)http://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Fourier_transformhttp://en.wikipedia.org/wiki/Fourier_transformhttp://en.wikipedia.org/wiki/Fourier_transformhttp://en.wikipedia.org/wiki/Fourier_transformhttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Intensity_(physics)http://en.wikipedia.org/wiki/Spin_(physics)http://en.wikipedia.org/wiki/Electromagnetic_fieldhttp://en.wikipedia.org/wiki/Magnetic_dipole_momenthttp://en.wikipedia.org/wiki/Magnetic_fieldhttp://en.wikipedia.org/wiki/Protonhttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Body_waterhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#External_linkshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Further_readinghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Referenceshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#See_alsohttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#2003_Nobel_Prizehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Image_segmentationhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#3D_rendering_techniqueshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#The_principlehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Three-dimensional_.283D.29_image_reconstructionhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#The_European_Physical_Agents_Directivehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Guidancehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Claustrophobia_and_discomforthttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Pregnancyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Contrast_agentshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Cryogenshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Acoustic_noisehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Peripheral_nerve_stimulation_.28PNS.29
  • 8/3/2019 MRI 1

    4/42

    through specially-woundsolenoids, known as gradient coils. Since these coils are within the bore of the

    scanner, there are large forces between them and the main field coils, producing most of the noise that is

    heard during operation. Without efforts to dampen this noise, it can approach 130decibels(dB) with

    strong fields[7]

    (see also the subsection onacoustic noise).

    An image can be constructed because the protons in different tissues return to their equilibrium state at

    different rates, which is a difference that can be detected. Five different tissue variablesspin

    density, T1 and T2 relaxation times and flow and spectral shifts can be used to construct images.[8]

    By

    changing the parameters on the scanner, this effect is used to create contrast between different types of

    body tissue or between other properties, as infMRIanddiffusion MRI.

    Contrast agentsmay be injectedintravenouslyto enhance the appearance ofblood

    vessels,tumorsorinflammation. Contrast agents may also be directly injected into a joint in the case

    ofarthrograms, MRI images of joints. UnlikeCT, MRI uses noionizing radiationand is generally a verysafe procedure. Nonetheless the strong magnetic fields and radio pulses can affect metal implants,

    includingcochlear implantsandcardiac pacemakers. In the case of cochlear implants, theUS FDAhas

    approved some implants forMRI compatibility. In the case of cardiac pacemakers, the results can

    sometimes be lethal,[9]

    so patients with such implants are generally not eligible for MRI.

    MRI is used to image every part of the body, and is particularly useful for tissues with many hydrogen

    nuclei and little density contrast, such as thebrain,muscle,connective tissueand mosttumors.

    Applications

    In clinical practice, MRI is used to distinguish pathologic tissue (such as abrain tumor) from normal

    tissue. One advantage of an MRI scan is that it is harmless to the patient. It uses strong magnetic fields and

    non-ionizing radiation in the radio frequency range, unlikeCT scansandtraditional X-rays, which both

    useionizing radiation.

    While CT provides goodspatial resolution(the ability to distinguish two separate structures an arbitrarily

    small distance from each other), MRI provides comparable resolution with far bettercontrast

    resolution(the ability to distinguish the differences between two arbitrarily similar but not identical

    tissues). The basis of this ability is the complex library ofpulse sequences that the modern medical MRIscanner includes, each of which is optimized to provide image contrastbased on the chemical sensitivity

    of MRI.

    Effects of TR, TE, T1 and T2 on MR signal.

    http://en.wikipedia.org/wiki/Solenoidhttp://en.wikipedia.org/wiki/Solenoidhttp://en.wikipedia.org/wiki/Solenoidhttp://en.wikipedia.org/wiki/Decibelshttp://en.wikipedia.org/wiki/Decibelshttp://en.wikipedia.org/wiki/Decibelshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-6http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-6http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-6http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Acoustic_noisehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Acoustic_noisehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Acoustic_noisehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-7http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-7http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-7http://en.wikipedia.org/wiki/FMRIhttp://en.wikipedia.org/wiki/FMRIhttp://en.wikipedia.org/wiki/FMRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Contrast_agentshttp://en.wikipedia.org/wiki/Contrast_agentshttp://en.wikipedia.org/wiki/Intravenous_therapyhttp://en.wikipedia.org/wiki/Intravenous_therapyhttp://en.wikipedia.org/wiki/Intravenous_therapyhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Neoplasmhttp://en.wikipedia.org/wiki/Neoplasmhttp://en.wikipedia.org/wiki/Neoplasmhttp://en.wikipedia.org/wiki/Inflammationhttp://en.wikipedia.org/wiki/Inflammationhttp://en.wikipedia.org/wiki/Inflammationhttp://en.wikipedia.org/wiki/Arthrogramhttp://en.wikipedia.org/wiki/Arthrogramhttp://en.wikipedia.org/wiki/Arthrogramhttp://en.wikipedia.org/wiki/Computed_Tomographyhttp://en.wikipedia.org/wiki/Computed_Tomographyhttp://en.wikipedia.org/wiki/Computed_Tomographyhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Cochlear_implanthttp://en.wikipedia.org/wiki/Cochlear_implanthttp://en.wikipedia.org/wiki/Cochlear_implanthttp://en.wikipedia.org/wiki/Cardiac_pacemakerhttp://en.wikipedia.org/wiki/Cardiac_pacemakerhttp://en.wikipedia.org/wiki/Cardiac_pacemakerhttp://en.wikipedia.org/wiki/US_FDAhttp://en.wikipedia.org/wiki/US_FDAhttp://en.wikipedia.org/wiki/US_FDAhttp://en.wikipedia.org/wiki/Cochlear_implant#The_operation.2C_post-implantation_therapy_and_ongoing_effectshttp://en.wikipedia.org/wiki/Cochlear_implant#The_operation.2C_post-implantation_therapy_and_ongoing_effectshttp://en.wikipedia.org/wiki/Cochlear_implant#The_operation.2C_post-implantation_therapy_and_ongoing_effectshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-8http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-8http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-8http://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Musclehttp://en.wikipedia.org/wiki/Musclehttp://en.wikipedia.org/wiki/Musclehttp://en.wikipedia.org/wiki/Connective_tissuehttp://en.wikipedia.org/wiki/Connective_tissuehttp://en.wikipedia.org/wiki/Connective_tissuehttp://en.wikipedia.org/wiki/Tumorhttp://en.wikipedia.org/wiki/Tumorhttp://en.wikipedia.org/wiki/Tumorhttp://en.wikipedia.org/wiki/Brain_tumorhttp://en.wikipedia.org/wiki/Brain_tumorhttp://en.wikipedia.org/wiki/Brain_tumorhttp://en.wikipedia.org/wiki/Computed_axial_tomographyhttp://en.wikipedia.org/wiki/Computed_axial_tomographyhttp://en.wikipedia.org/wiki/Computed_axial_tomographyhttp://en.wikipedia.org/wiki/Radiographyhttp://en.wikipedia.org/wiki/Radiographyhttp://en.wikipedia.org/wiki/Radiographyhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Spatial_resolutionhttp://en.wikipedia.org/wiki/Spatial_resolutionhttp://en.wikipedia.org/wiki/Spatial_resolutionhttp://en.wikipedia.org/wiki/Contrast_resolutionhttp://en.wikipedia.org/wiki/Contrast_resolutionhttp://en.wikipedia.org/wiki/Contrast_resolutionhttp://en.wikipedia.org/wiki/Contrast_resolutionhttp://en.wikipedia.org/wiki/File:TR_TE.jpghttp://en.wikipedia.org/wiki/Contrast_resolutionhttp://en.wikipedia.org/wiki/Contrast_resolutionhttp://en.wikipedia.org/wiki/Spatial_resolutionhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Radiographyhttp://en.wikipedia.org/wiki/Computed_axial_tomographyhttp://en.wikipedia.org/wiki/Brain_tumorhttp://en.wikipedia.org/wiki/Tumorhttp://en.wikipedia.org/wiki/Connective_tissuehttp://en.wikipedia.org/wiki/Musclehttp://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-8http://en.wikipedia.org/wiki/Cochlear_implant#The_operation.2C_post-implantation_therapy_and_ongoing_effectshttp://en.wikipedia.org/wiki/US_FDAhttp://en.wikipedia.org/wiki/Cardiac_pacemakerhttp://en.wikipedia.org/wiki/Cochlear_implanthttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Computed_Tomographyhttp://en.wikipedia.org/wiki/Arthrogramhttp://en.wikipedia.org/wiki/Inflammationhttp://en.wikipedia.org/wiki/Neoplasmhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Intravenous_therapyhttp://en.wikipedia.org/wiki/Contrast_agentshttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/FMRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-7http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Acoustic_noisehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-6http://en.wikipedia.org/wiki/Decibelshttp://en.wikipedia.org/wiki/Solenoid
  • 8/3/2019 MRI 1

    5/42

    For example, with particular values of the echo time (TE) and the repetition time (TR), which are basic

    parameters of image acquisition, a sequence takes on the property ofT2-weighting. On a T2-weighted scan,

    water- and fluid-containing tissues are bright (most modern T2 sequences are actuallyfastT2sequences)

    and fat-containing tissues are dark. The reverse is true for T1-weighted images. Damaged tissue tends to

    developedema, which makes a T2-weighted sequence sensitive for pathology, and generally able to

    distinguish pathologic tissue from normal tissue. With the addition of an additional radio frequency pulse

    and additional manipulation of the magnetic gradients, a T2-weighted sequence can be converted to

    aFLAIRsequence, in which free water is now dark, but edematous tissues remain bright. This sequence

    in particular is currently the most sensitive way to evaluate the brain fordemyelinatingdiseases, such

    asmultiple sclerosis.

    The typical MRI examination consists of 520 sequences, each of which are chosen to provide a particular

    type of information about the subject tissues. This information is then synthesized by the

    interpretingphysician.

    Basic MRI scans

    T1-weighted MRI

    Main article:Spin-lattice relaxation time

    T1-weighted scans are a standard basic scan, in particular differentiating fat from water - with water darker

    and fat brighter[10]

    use a gradient echo (GRE) sequence, with short TE and short TR. This is one of the basic

    types of MR contrast and is a commonly run clinical scan. The T1 weighting can be increased (improving

    contrast) with the use of an inversion pulse as in an MP-RAGE sequence. Due to the short repetition time

    (TR) this scan can be run very fast allowing the collection of high resolution 3D datasets. A T1 reducing

    gadolinium contrast agent is also commonly used, with a T1 scan being collected before and after

    administration of contrast agent to compare the difference. In the brain T1-weighted scans provide good

    gray matter/white matter contrast; in other words, T1-weighted images highlight fat deposition.

    T2-weighted MRI

    Main article:Spin-spin relaxation time

    T2-weighted scans are another basic type. Like the T1-weighted scan, fat is differentiated from water - butin this case fat shows darker, and water lighter. They are therefore particularly well suited to

    imagingedema.[11]

    On brain scans cerebral white matter (fat containing) therefore shows as darker than the

    grey matter. T2-weighted scans use aspin echo(SE) sequence, with long TE and long TR. They have long

    been the clinical workhorse as the spin echo sequence is less susceptible to inhomogeneities in the

    magnetic field.

    [edit]T*2-weighted MRI

    T*2 (pronounced "T 2 star") weighted scans use a gradient echo (GRE) sequence, with long TE and long TR.

    The gradient echo sequence used does not have the extra refocusing pulse used in spin echo so it is subject

    to additional losses above the normal T2 decay (referred to as T2), these taken together are calledT*2. This

    http://en.wikipedia.org/wiki/Edemahttp://en.wikipedia.org/wiki/Edemahttp://en.wikipedia.org/wiki/Edemahttp://en.wikipedia.org/wiki/Fluid_Light_Attenuation_Inversion_Recoveryhttp://en.wikipedia.org/wiki/Fluid_Light_Attenuation_Inversion_Recoveryhttp://en.wikipedia.org/wiki/Fluid_Light_Attenuation_Inversion_Recoveryhttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Multiple_sclerosishttp://en.wikipedia.org/wiki/Multiple_sclerosishttp://en.wikipedia.org/wiki/Multiple_sclerosishttp://en.wikipedia.org/wiki/Physicianhttp://en.wikipedia.org/wiki/Physicianhttp://en.wikipedia.org/wiki/Physicianhttp://en.wikipedia.org/wiki/Spin-lattice_relaxation_timehttp://en.wikipedia.org/wiki/Spin-lattice_relaxation_timehttp://en.wikipedia.org/wiki/Spin-lattice_relaxation_timehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t1-9http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t1-9http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t1-9http://en.wikipedia.org/wiki/Spin-spin_relaxation_timehttp://en.wikipedia.org/wiki/Spin-spin_relaxation_timehttp://en.wikipedia.org/wiki/Spin-spin_relaxation_timehttp://en.wikipedia.org/wiki/Edemahttp://en.wikipedia.org/wiki/Edemahttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t2-10http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t2-10http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t2-10http://en.wikipedia.org/wiki/Spin_echohttp://en.wikipedia.org/wiki/Spin_echohttp://en.wikipedia.org/wiki/Spin_echohttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=6http://en.wikipedia.org/wiki/Spin_echohttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t2-10http://en.wikipedia.org/wiki/Edemahttp://en.wikipedia.org/wiki/Spin-spin_relaxation_timehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-t1-9http://en.wikipedia.org/wiki/Spin-lattice_relaxation_timehttp://en.wikipedia.org/wiki/Physicianhttp://en.wikipedia.org/wiki/Multiple_sclerosishttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Fluid_Light_Attenuation_Inversion_Recoveryhttp://en.wikipedia.org/wiki/Edema
  • 8/3/2019 MRI 1

    6/42

    also makes it more prone to susceptibility losses at air/tissue boundaries, but can increase contrast for

    certain types of tissue, such as venous blood.

    [edit]Spin density weighted MRI

    Spin density, also called proton density, weighted scans try to have no contrast from either T2

    or T1

    decay,

    the only signal change coming from differences in the amount of available spins (hydrogen nuclei in

    water). It uses a spin echo or sometimes a gradient echo sequence, with short TE and long TR.

    [edit]Specialized MRI scans

    [edit]Diffusion MRI

    Main article:Diffusion MRI

    DTI image

    Diffusion MRImeasures thediffusionof water molecules in biological tissues.[12]

    In anisotropicmedium

    (inside a glass of water for example) water molecules naturally move randomly according

    toturbulenceandBrownian motion. In biological tissues however, where theReynold's numberis low

    enough for flows to belaminar, the diffusion may beanisotropic. For example a molecule inside

    theaxonof a neuron has a low probability of crossing themyelinmembrane. Therefore the molecule

    moves principally along the axis of the neural fiber. If we know that molecules in a particularvoxeldiffuse

    principally in one direction we can make the assumption that the majority of the fibers in this area are

    going parallel to that direction.

    The recent development ofdiffusion tensor imaging(DTI)[3]

    enables diffusion to be measured in multiple

    directions and the fractional anisotropy in each direction to be calculated for each voxel. This enables

    researchers to make brain maps of fiber directions to examine the connectivity of different regions in the

    brain (usingtractography) or to examine areas of neural degeneration and demyelination in diseases

    likeMultiple Sclerosis.

    Another application of diffusion MRI isdiffusion-weighted imaging(DWI). Following an ischemicstroke,

    DWI is highly sensitive to the changes occurring in the lesion.[13]

    It is speculated that increases in

    restriction (barriers) to water diffusion, as a result of cytotoxic edema (cellular swelling), is responsible for

    the increase in signal on a DWI scan. The DWI enhancement appears within 510 minutes of the onset of

    http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=9http://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-11http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-11http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-11http://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Turbulencehttp://en.wikipedia.org/wiki/Turbulencehttp://en.wikipedia.org/wiki/Turbulencehttp://en.wikipedia.org/wiki/Brownian_motionhttp://en.wikipedia.org/wiki/Brownian_motionhttp://en.wikipedia.org/wiki/Brownian_motionhttp://en.wikipedia.org/wiki/Reynold%27s_numberhttp://en.wikipedia.org/wiki/Reynold%27s_numberhttp://en.wikipedia.org/wiki/Reynold%27s_numberhttp://en.wikipedia.org/wiki/Laminarhttp://en.wikipedia.org/wiki/Laminarhttp://en.wikipedia.org/wiki/Laminarhttp://en.wikipedia.org/wiki/Anisotropichttp://en.wikipedia.org/wiki/Anisotropichttp://en.wikipedia.org/wiki/Anisotropichttp://en.wikipedia.org/wiki/Axonhttp://en.wikipedia.org/wiki/Axonhttp://en.wikipedia.org/wiki/Axonhttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Voxelhttp://en.wikipedia.org/wiki/Voxelhttp://en.wikipedia.org/wiki/Voxelhttp://en.wikipedia.org/wiki/Diffusion_tensor_imaginghttp://en.wikipedia.org/wiki/Diffusion_tensor_imaginghttp://en.wikipedia.org/wiki/Diffusion_tensor_imaginghttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Filler2009b-2http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Filler2009b-2http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Filler2009b-2http://en.wikipedia.org/wiki/Tractographyhttp://en.wikipedia.org/wiki/Tractographyhttp://en.wikipedia.org/wiki/Tractographyhttp://en.wikipedia.org/wiki/Multiple_Sclerosishttp://en.wikipedia.org/wiki/Multiple_Sclerosishttp://en.wikipedia.org/wiki/Multiple_Sclerosishttp://en.wikipedia.org/wiki/Diffusion-weighted_imaginghttp://en.wikipedia.org/wiki/Diffusion-weighted_imaginghttp://en.wikipedia.org/wiki/Diffusion-weighted_imaginghttp://en.wikipedia.org/wiki/Strokehttp://en.wikipedia.org/wiki/Strokehttp://en.wikipedia.org/wiki/Strokehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-12http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-12http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-12http://en.wikipedia.org/wiki/File:Illus_dti.gifhttp://en.wikipedia.org/wiki/File:Illus_dti.gifhttp://en.wikipedia.org/wiki/File:Illus_dti.gifhttp://en.wikipedia.org/wiki/File:Illus_dti.gifhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-12http://en.wikipedia.org/wiki/Strokehttp://en.wikipedia.org/wiki/Diffusion-weighted_imaginghttp://en.wikipedia.org/wiki/Multiple_Sclerosishttp://en.wikipedia.org/wiki/Tractographyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Filler2009b-2http://en.wikipedia.org/wiki/Diffusion_tensor_imaginghttp://en.wikipedia.org/wiki/Voxelhttp://en.wikipedia.org/wiki/Myelinhttp://en.wikipedia.org/wiki/Axonhttp://en.wikipedia.org/wiki/Anisotropichttp://en.wikipedia.org/wiki/Laminarhttp://en.wikipedia.org/wiki/Reynold%27s_numberhttp://en.wikipedia.org/wiki/Brownian_motionhttp://en.wikipedia.org/wiki/Turbulencehttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-11http://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/wiki/Diffusion_MRIhttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=7
  • 8/3/2019 MRI 1

    7/42

    stroke symptoms (as compared withcomputed tomography, which often does not detect changes of acute

    infarct for up to 46 hours) and remains for up to two weeks. Coupled with imaging of cerebral perfusion,

    researchers can highlight regions of "perfusion/diffusion mismatch" that may indicate regions capable of

    salvage by reperfusion therapy.

    Like many other specialized applications, this technique is usually coupled with a fast image acquisition

    sequence, such as echo planar imaging sequence.

    Magnetization Transfer MRI

    Main article:Magnetization transfer

    Magnetization transfer (MT) refers to the transfer of longitudinal magnetization from free water protons to

    hydration water protons in NMR and MRI.

    In magnetic resonance imaging of molecular solutions, such as protein solutions, two types of watermolecules, free (bulk) and hydration (bound), are found. Free water protons have faster average rotational

    frequency and hence less fixed water molecules that may cause local field inhomogeneity. Because of this

    uniformity, most free water protons have resonance frequency lying narrowly around the normal proton

    resonance frequency of 63 MHz (at 1.5 teslas). This also results in slower transverse magnetization

    dephasing and hence longer T2. Conversely, hydration water molecules are slowed down by interaction

    with solute molecules and hence create field inhomogeneities that lead to wider resonance frequency

    spectrum.

    [edit]Fluid attenuated inversion recovery (FLAIR)Main article:Fluid attenuated inversion recovery

    Fluid Attenuated Inversion Recovery (FLAIR)[14]

    is an inversion-recovery pulse sequence used to null

    signal from fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) so as

    to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. By carefully

    choosing the inversion time TI (the time between the inversion and excitation pulses), the signal from any

    particular tissue can be suppressed.

    [edit]Magnetic resonance angiography

    http://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Magnetization_transferhttp://en.wikipedia.org/wiki/Magnetization_transferhttp://en.wikipedia.org/wiki/Magnetization_transferhttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=11http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=11http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=11http://en.wikipedia.org/wiki/Fluid_attenuated_inversion_recoveryhttp://en.wikipedia.org/wiki/Fluid_attenuated_inversion_recoveryhttp://en.wikipedia.org/wiki/Fluid_attenuated_inversion_recoveryhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-13http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-13http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-13http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=12http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=12http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=12http://en.wikipedia.org/wiki/File:Mra1.jpghttp://en.wikipedia.org/wiki/File:Mra1.jpghttp://en.wikipedia.org/wiki/File:Mra1.jpghttp://en.wikipedia.org/wiki/File:Mra1.jpghttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=12http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-13http://en.wikipedia.org/wiki/Fluid_attenuated_inversion_recoveryhttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=11http://en.wikipedia.org/wiki/Magnetization_transferhttp://en.wikipedia.org/wiki/Computed_tomography
  • 8/3/2019 MRI 1

    8/42

    Magnetic ResonanceAngiography

    Main article:Magnetic resonance angiography

    Magnetic resonance angiography (MRA) generates pictures of the arteries to evaluate them

    forstenosis(abnormal narrowing) oraneurysms(vessel wall dilatations, at risk of rupture). MRA is often

    used to evaluate the arteries of the neck and brain, the thoracic and abdominal aorta, the renal arteries, and

    the legs (called a "run-off"). A variety of techniques can be used to generate the pictures, such as

    administration of aparamagneticcontrast agent (gadolinium) or using a technique known as "flow-related

    enhancement" (e.g. 2D and 3D time-of-flight sequences), where most of the signal on an image is due to

    blood that recently moved into that plane, see alsoFLASH MRI. Techniques involving phase

    accumulation (known as phase contrast angiography) can also be used to generate flow velocity maps

    easily and accurately. Magnetic resonance venography (MRV) is a similar procedure that is used to image

    veins. In this method, the tissue is now excited inferiorly, while signal is gathered in the plane immediately

    superior to the excitation planethus imaging the venous blood that recently moved from the excited

    plane.[15]

    [edit]Magnetic resonance gated intracranial CSF dynamics (MR-GILD)

    Magnetic resonance gated intracranial cerebrospinal fluid (CSF) or liquor dynamics (MR-GILD) technique

    is an MR sequence based on bipolar gradient pulse used to demonstrate CSF pulsatile flow in ventricles,

    cisterns, aqueduct of Sylvius and entire intracranial CSF pathway. It is a method for analyzing CSF

    circulatory system dynamics in patients with CSF obstructive lesions such as normal pressure

    hydrocephalus. It also allows visualization of both arterial and venous pulsatile blood flow in vessels

    without use of contrast agents.[16][17]

    Diastolic time data acquisition (DTDA). Systolic time data acquisition (STDA).

    [edit]Magnetic resonance spectroscopy

    Main article:In vivo magnetic resonance spectroscopy

    Main article:Nuclear magnetic resonance spectroscopy

    http://en.wikipedia.org/wiki/Angiographyhttp://en.wikipedia.org/wiki/Angiographyhttp://en.wikipedia.org/wiki/Angiographyhttp://en.wikipedia.org/wiki/Magnetic_resonance_angiographyhttp://en.wikipedia.org/wiki/Magnetic_resonance_angiographyhttp://en.wikipedia.org/wiki/Magnetic_resonance_angiographyhttp://en.wikipedia.org/wiki/Stenosishttp://en.wikipedia.org/wiki/Stenosishttp://en.wikipedia.org/wiki/Stenosishttp://en.wikipedia.org/wiki/Aneurysmhttp://en.wikipedia.org/wiki/Aneurysmhttp://en.wikipedia.org/wiki/Aneurysmhttp://en.wikipedia.org/wiki/Paramagnetichttp://en.wikipedia.org/wiki/Paramagnetichttp://en.wikipedia.org/wiki/Paramagnetichttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/FLASH_MRIhttp://en.wikipedia.org/wiki/FLASH_MRIhttp://en.wikipedia.org/wiki/FLASH_MRIhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-haacke-14http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-haacke-14http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-haacke-14http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=13http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=13http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=13http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-15http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-15http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-15http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=14http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=14http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=14http://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/File:MRI-STDA.psd.jpghttp://en.wikipedia.org/wiki/File:MRI-DTDA.psd.jpghttp://en.wikipedia.org/wiki/File:MRI-STDA.psd.jpghttp://en.wikipedia.org/wiki/File:MRI-DTDA.psd.jpghttp://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=14http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-15http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-15http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=13http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-haacke-14http://en.wikipedia.org/wiki/FLASH_MRIhttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/Paramagnetichttp://en.wikipedia.org/wiki/Aneurysmhttp://en.wikipedia.org/wiki/Stenosishttp://en.wikipedia.org/wiki/Magnetic_resonance_angiographyhttp://en.wikipedia.org/wiki/Angiography
  • 8/3/2019 MRI 1

    9/42

    Magnetic resonance spectroscopy(MRS) is used to measure the levels of differentmetabolitesin body

    tissues. The MR signal produces a spectrum of resonances that correspond to different molecular

    arrangements of the isotope being "excited". This signature is used to diagnose certain metabolic disorders,

    especially those affecting the brain,[18]

    and to provide information on tumormetabolism.[19]

    Magnetic resonance spectroscopic imaging (MRSI) combines both spectroscopic and imaging methods to

    produce spatially localized spectra from within the sample or patient. The spatial resolution is much lower

    (limited by the availableSNR), but the spectra in each voxel contains information about many metabolites.

    Because the available signal is used to encode spatial and spectral information, MRSI requires high SNR

    achievable only at higher field strengths (3 T and above).

    [edit]Functional MRI

    Main article:Functional magnetic resonance imaging

    A fMRI scan showing regions of activation in orange, including theprimary visual cortex(V1, BA17).

    Functional MRI(fMRI) measures signal changes in thebrainthat are due to changingneuralactivity. The

    brain is scanned at low resolution but at a rapid rate (typically once every 23 seconds). Increases in neural

    activity cause changes in the MR signal via T*2 changes;[20]

    this mechanism is referred to as the BOLD

    (blood-oxygen-level dependent) effect. Increased neural activity causes an increased demand for oxygen,

    and thevascularsystem actually overcompensates for this, increasing the amount of

    oxygenatedhemoglobinrelative to deoxygenated hemoglobin. Because deoxygenated hemoglobin

    attenuates the MR signal, the vascular response leads to a signal increase that is related to the neuralactivity. The precise nature of the relationship between neural activity and the BOLD signal is a subject of

    current research. The BOLD effect also allows for the generation of high resolution 3D maps of the venous

    vasculature within neural tissue.

    While BOLD signal is the most common method employed for neuroscience studies in human subjects, the

    flexible nature of MR imaging provides means to sensitize the signal to other aspects of the blood supply.

    Alternative techniques employarterial spin labeling(ASL) or weight the MRI signal by cerebral blood

    flow (CBF) and cerebral blood volume (CBV). The CBV method requires injection of a class of MRI

    contrast agents that are now in human clinical trials. Because this method has been shown to be far moresensitive than the BOLD technique in preclinical studies, it may potentially expand the role of fMRI in

    http://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopyhttp://en.wikipedia.org/wiki/Metaboliteshttp://en.wikipedia.org/wiki/Metaboliteshttp://en.wikipedia.org/wiki/Metaboliteshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-17http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-17http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-17http://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-18http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-18http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-18http://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=15http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=15http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=15http://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaginghttp://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaginghttp://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaginghttp://en.wikipedia.org/wiki/Primary_visual_cortexhttp://en.wikipedia.org/wiki/Primary_visual_cortexhttp://en.wikipedia.org/wiki/Primary_visual_cortexhttp://en.wikipedia.org/wiki/Functional_MRIhttp://en.wikipedia.org/wiki/Functional_MRIhttp://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Neuronhttp://en.wikipedia.org/wiki/Neuronhttp://en.wikipedia.org/wiki/Neuronhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-19http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-19http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-19http://en.wikipedia.org/wiki/Blood-oxygen-level_dependenthttp://en.wikipedia.org/wiki/Blood-oxygen-level_dependenthttp://en.wikipedia.org/wiki/Blood-oxygen-level_dependenthttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Hemoglobinhttp://en.wikipedia.org/wiki/Hemoglobinhttp://en.wikipedia.org/wiki/Hemoglobinhttp://en.wikipedia.org/wiki/Arterial_spin_labelinghttp://en.wikipedia.org/wiki/Arterial_spin_labelinghttp://en.wikipedia.org/wiki/Arterial_spin_labelinghttp://en.wikipedia.org/wiki/File:FMRI.jpghttp://en.wikipedia.org/wiki/Arterial_spin_labelinghttp://en.wikipedia.org/wiki/Hemoglobinhttp://en.wikipedia.org/wiki/Blood_vesselhttp://en.wikipedia.org/wiki/Blood-oxygen-level_dependenthttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-19http://en.wikipedia.org/wiki/Neuronhttp://en.wikipedia.org/wiki/Brainhttp://en.wikipedia.org/wiki/Functional_MRIhttp://en.wikipedia.org/wiki/Primary_visual_cortexhttp://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaginghttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=15http://en.wikipedia.org/wiki/Signal-to-noise_ratiohttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-18http://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-17http://en.wikipedia.org/wiki/Metaboliteshttp://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopy
  • 8/3/2019 MRI 1

    10/42

    clinical applications. The CBF method provides more quantitative information than the BOLD signal,

    albeit at a significant loss of detection sensitivity.

    Real-time MRI

    Main article:Real-time MRI

    Real-time MRIrefers to the continuous monitoring (filming) of moving objects in real time. While many

    different strategies have been developed over the past two decades, a recent development reported a real-

    time MRI technique based on radialFLASHthat yields a temporal resolution of 20 to 30 milliseconds for

    images with an in-plane resolution of 1.5 to 2.0 mm. The new method promises to add important

    information about diseases of the joints and the heart. In many cases MRI examinations may become easier

    and more comfortable for patients.

    Interventional MRI

    Main article:Interventional MRI

    The lack of harmful effects on the patient and the operator make MRI well-suited for "interventional

    radiology", where the images produced by a MRI scanner are used to guide minimally invasive procedures.

    Of course, such procedures must be done without anyferromagneticinstruments.

    A specialized growing subset of interventional MRI is that of intraoperative MRI in which the MRI is used

    in the surgical process. Some specialized MRI systems have been developed that allow imaging concurrent

    with the surgical procedure. More typical, however, is that the surgical procedure is temporarily

    interrupted so that MR images can be acquired to verify the success of the procedure or guide subsequent

    surgical work.

    Radiation therapy simulation

    Because of MRI's superior imaging of soft tissues, it is now being utilized to specifically locate tumors

    within the body in preparation for radiation therapy treatments. For therapy simulation, a patient is placed

    in specific, reproducible, body position and scanned. The MRI system then computes the precise location,

    shape and orientation of the tumor mass, correcting for any spatial distortion inherent in the system. The

    patient is then marked or tattooed with points that, when combined with the specific body position, permits

    precise triangulation for radiation therapy.

    Current density imaging

    Current density imaging(CDI) endeavors to use the phase information from images to reconstruct current

    densities within a subject. Current density imaging works because electrical currents generate magnetic

    fields, which in turn affect the phase of the magnetic dipoles during an imaging sequence.

    Magnetic resonance guided focused ultrasound

    InMRgFUStherapy, ultrasound beams are focused on a tissueguided and controlled using MR thermal

    imagingand due to the significant energy deposition at the focus, temperature within the tissue rises to

    http://en.wikipedia.org/wiki/Real-time_MRIhttp://en.wikipedia.org/wiki/Real-time_MRIhttp://en.wikipedia.org/wiki/Real-time_MRIhttp://en.wikipedia.org/wiki/Real-time_MRIhttp://en.wikipedia.org/wiki/Real-time_MRIhttp://en.wikipedia.org/wiki/FLASHhttp://en.wikipedia.org/wiki/FLASHhttp://en.wikipedia.org/wiki/FLASHhttp://en.wikipedia.org/wiki/Interventional_MRIhttp://en.wikipedia.org/wiki/Interventional_MRIhttp://en.wikipedia.org/wiki/Interventional_MRIhttp://en.wikipedia.org/wiki/Ferromagnetichttp://en.wikipedia.org/wiki/Ferromagnetichttp://en.wikipedia.org/wiki/Ferromagnetichttp://en.wikipedia.org/wiki/Current_density_imaginghttp://en.wikipedia.org/wiki/Current_density_imaginghttp://en.wikipedia.org/wiki/MRgFUShttp://en.wikipedia.org/wiki/MRgFUShttp://en.wikipedia.org/wiki/MRgFUShttp://en.wikipedia.org/wiki/MRgFUShttp://en.wikipedia.org/wiki/Current_density_imaginghttp://en.wikipedia.org/wiki/Ferromagnetichttp://en.wikipedia.org/wiki/Interventional_MRIhttp://en.wikipedia.org/wiki/FLASHhttp://en.wikipedia.org/wiki/Real-time_MRIhttp://en.wikipedia.org/wiki/Real-time_MRI
  • 8/3/2019 MRI 1

    11/42

    more than 65C(150 F), completely destroying it. This technology can achieve preciseablationof

    diseased tissue. MR imaging provides a three-dimensional view of the target tissue, allowing for precise

    focusing of ultrasound energy. The MR imaging provides quantitative, real-time, thermal images of the

    treated area. This allows the physician to ensure that the temperature generated during each cycle of

    ultrasound energy is sufficient to cause thermal ablation within the desired tissue and if not, to adapt the

    parameters to ensure effective treatment.

    Multinuclear imaging

    Hydrogen is the most frequently imaged nucleus in MRI because it is present in biological tissues in great

    abundance. However, any nucleus with a net nuclear spin could potentially be imaged with MRI. Such

    nuclei includehelium-3,carbon-13,fluorine-19,oxygen-17,sodium-23,phosphorus-31 andxenon-

    129.23

    Na,31

    P and17

    Oare naturally abundant in the body, so can be imaged directly. Gaseous isotopes

    such as

    3

    He or

    129

    Xe must behyperpolarizedand then inhaled as their nuclear density is too low to yield auseful signal under normal conditions.

    17O,

    13C and

    19F can be administered in sufficient quantities in

    liquid form (e.g.17

    O-water,13

    C-glucosesolutions or perfluorocarbons) that hyperpolarization is not a

    necessity.

    Multinuclear imaging is primarily a research technique at present. However, potential applications include

    functional imaging and imaging of organs poorly seen on1H MRI (e.g. lungs and bones) or as alternative

    contrast agents. Inhaled hyperpolarized3He can be used to image the distribution of air spaces within the

    lungs. Injectable solutions containing13

    C or stabilized bubbles of hyperpolarized129

    Xe have been studied

    as contrast agents for angiography and perfusion imaging.31

    P can potentially provide information on bonedensity and structure, as well as functional imaging of the brain.

    [edit]Susceptibility weighted imaging (SWI)

    Main article:Susceptibility weighted imaging

    Susceptibility weighted imaging (SWI), is a new type of contrast in MRI different from spin density, T1,

    or T2 imaging. This method exploits the susceptibility differences between tissues and uses a fully velocity

    compensated, three dimensional, RF spoiled, high-resolution, 3D gradient echo scan. This special data

    acquisition and image processing produces an enhanced contrast magnitude image very sensitive to venous

    blood,hemorrhageand iron storage. It is used to enhance the detection and diagnosis of tumors, vascular

    and neurovascular diseases (stroke and hemorrhage, multiple sclerosis, Alzheimer's), and also detects

    traumatic brain injuries that may not be diagnosed using other methods[21]

    [edit]Other specialized MRI techniques

    field of research and new methods and variants are often published when they are able to get better results

    in specific fields. Examples of these recent improvements areT*2-weightedturbo spin-echo (T2 TSE MRI),

    double inversion recovery MRI (DIR-MRI) or phase-sensitive inversion recovery MRI (PSIR-MRI), all of

    them able to improve imaging of the brain lesions.

    [22][23]

    Another example is MP-RAGE (magnetization-

    http://en.wikipedia.org/wiki/%C2%B0Chttp://en.wikipedia.org/wiki/%C2%B0Chttp://en.wikipedia.org/wiki/%C2%B0Chttp://en.wikipedia.org/wiki/Ablationhttp://en.wikipedia.org/wiki/Ablationhttp://en.wikipedia.org/wiki/Ablationhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Sodiumhttp://en.wikipedia.org/wiki/Sodiumhttp://en.wikipedia.org/wiki/Sodiumhttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Hyperpolarization_(physics)http://en.wikipedia.org/wiki/Hyperpolarization_(physics)http://en.wikipedia.org/wiki/Hyperpolarization_(physics)http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Glucosehttp://en.wikipedia.org/wiki/Glucosehttp://en.wikipedia.org/wiki/Glucosehttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=22http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=22http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=22http://en.wikipedia.org/wiki/Susceptibility_weighted_imaginghttp://en.wikipedia.org/wiki/Susceptibility_weighted_imaginghttp://en.wikipedia.org/wiki/Susceptibility_weighted_imaginghttp://en.wikipedia.org/wiki/Hemorrhagehttp://en.wikipedia.org/wiki/Hemorrhagehttp://en.wikipedia.org/wiki/Hemorrhagehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-20http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-20http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-20http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=23http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=23http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=23http://en.wikipedia.org/wiki/Relaxation_(NMR)http://en.wikipedia.org/wiki/Relaxation_(NMR)http://en.wikipedia.org/wiki/Relaxation_(NMR)http://en.wikipedia.org/wiki/Relaxation_(NMR)http://en.wikipedia.org/wiki/Relaxation_(NMR)http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-21http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-21http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-21http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-21http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-21http://en.wikipedia.org/wiki/Relaxation_(NMR)http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=23http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-20http://en.wikipedia.org/wiki/Hemorrhagehttp://en.wikipedia.org/wiki/Susceptibility_weighted_imaginghttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=22http://en.wikipedia.org/wiki/Glucosehttp://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Hyperpolarization_(physics)http://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Sodiumhttp://en.wikipedia.org/wiki/Oxygen-17http://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Ablationhttp://en.wikipedia.org/wiki/%C2%B0C
  • 8/3/2019 MRI 1

    12/42

    prepared rapid acquisition with gradient echo),[24]

    which improves images of multiple sclerosis cortical

    lesions.[25]

    Portable instruments

    Portable magnetic resonance instruments are available for use in education and field research. Using the

    principles ofEarth's field NMR, they have no powerful polarizing magnet, so that such instruments can be

    small and inexpensive. Some can be used for both EFNMR spectroscopy and MRI imaging.[26]

    The low

    strength of the Earth's field results in poor signal to noise ratios, requiring long scan times to capture

    spectroscopic data or build up MRI images.

    Research withatomic magnetometershave discussed the possibility for cheap and portable MRI

    instruments without the large magnet.[27][28]

    [edit]MRI versus CT

    Acomputed tomography(CT) scanner usesX-rays, a type ofionizing radiation, to acquire its images,

    making it a good tool for examining tissue composed of elements of a higher atomic number than the

    tissue surrounding them, such as bone and calcifications (calcium based) within the body (carbon based

    flesh), or of structures (vessels, bowel). MRI, on the other hand, uses non-ionizingradio frequency(RF)

    signals to acquire its images and is best suited for non-calcified tissue, though MR images can also be

    acquired from bones and teeth[29]

    as well as fossils.[30]

    CT may be enhanced by use ofcontrast agentscontaining elements of a higher atomic number than the

    surrounding flesh such asiodineorbarium. Contrast agents for MRI haveparamagneticproperties,

    e.g.,gadoliniumandmanganese.

    Both CT and MRI scanners are able to generate multiple two-dimensional cross-sections (slices) of tissue

    and three-dimensional reconstructions. Unlike CT, which uses only X-ray attenuation to generate image

    contrast, MRI has a long list of properties that may be used to generate image contrast. By variation of

    scanning parameters, tissue contrast can be altered and enhanced in various ways to detect different

    features. (SeeApplicationsabove.)

    MRI can generate cross-sectional images in anyplane(including oblique planes). In the past, CT was

    limited to acquiring images in the axial (or near axial) plane. The scans used to be calledComputedAxial Tomography scans (CAT scans). However, the development of multi-detector CT

    scanners with near-isotropicresolution, allows the CT scanner to produce data that can be retrospectively

    reconstructed in any plane with minimal loss of image quality.

    For purposes of tumor detection and identification in the brain, MRI is generally

    superior.[31][32][33]

    However, in the case of solid tumors of the abdomen and chest, CT is often preferred due

    to less motion artifact. Furthermore, CT usually is more widely available, faster, less expensive, and may

    be less likely to require the person to be sedated or anesthetized.

    http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-23http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-23http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-23http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-24http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-24http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-24http://en.wikipedia.org/wiki/Earth%27s_field_NMRhttp://en.wikipedia.org/wiki/Earth%27s_field_NMRhttp://en.wikipedia.org/wiki/Earth%27s_field_NMRhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-25http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-25http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-25http://en.wikipedia.org/wiki/Magnetometerhttp://en.wikipedia.org/wiki/Magnetometerhttp://en.wikipedia.org/wiki/Magnetometerhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-26http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-26http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-26http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=25http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=25http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=25http://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Wu1999-28http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Wu1999-28http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Wu1999-28http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Mietchen2008-29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Mietchen2008-29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Mietchen2008-29http://en.wikipedia.org/wiki/Contrast_mediumhttp://en.wikipedia.org/wiki/Contrast_mediumhttp://en.wikipedia.org/wiki/Contrast_mediumhttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Bariumhttp://en.wikipedia.org/wiki/Bariumhttp://en.wikipedia.org/wiki/Bariumhttp://en.wikipedia.org/wiki/Paramagnetismhttp://en.wikipedia.org/wiki/Paramagnetismhttp://en.wikipedia.org/wiki/Paramagnetismhttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/Manganesehttp://en.wikipedia.org/wiki/Manganesehttp://en.wikipedia.org/wiki/Manganesehttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Applicationshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Applicationshttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Applicationshttp://en.wikipedia.org/wiki/Plane_(mathematics)http://en.wikipedia.org/wiki/Plane_(mathematics)http://en.wikipedia.org/wiki/Plane_(mathematics)http://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-30http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-30http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-32http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-32http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-32http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-30http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-30http://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Plane_(mathematics)http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Applicationshttp://en.wikipedia.org/wiki/Manganesehttp://en.wikipedia.org/wiki/Gadoliniumhttp://en.wikipedia.org/wiki/Paramagnetismhttp://en.wikipedia.org/wiki/Bariumhttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Contrast_mediumhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Mietchen2008-29http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-Wu1999-28http://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Ionizing_radiationhttp://en.wikipedia.org/wiki/X-rayhttp://en.wikipedia.org/wiki/Computed_tomographyhttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=25http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-26http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-26http://en.wikipedia.org/wiki/Magnetometerhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-25http://en.wikipedia.org/wiki/Earth%27s_field_NMRhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-24http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-23
  • 8/3/2019 MRI 1

    13/42

    MRI is also best suited for cases when a patient is to undergo the exam several times successively in the

    short term, because, unlike CT, it does not expose the patient to the hazards of ionizing radiation.

    [edit]Economics of MRI

    MRI equipment is expensive. 1.5 tesla scanners often cost between $1 million and $1.5 million USD. 3.0

    tesla scanners often cost between $2 million and $2.3 million USD. Construction of MRI suites can cost up

    to $500,000 USD, or more, depending on project scope.

    Looking through an MRI scanner.

    MRI scanners have been significant sources of revenue for healthcare providers in the US. This is because

    of favorable reimbursement rates from insurers and federal government programs. Insurance

    reimbursement is provided in two components, an equipment charge for the actual performance of the MRI

    scan and professional charge for the radiologist's review of the images and/or data. In the US Northeast, an

    equipment charge might be $3,500 and a professional charge might be $350[34]

    although the actual fees

    received by the equipment owner and interpreting physician are often significantly less and depend on the

    rates negotiated with insurance companies or determined by governmental action as in the Medicare Fee

    Schedule. For example, an orthopedic surgery group in Illinois billed a charge of $1,116 for a knee MRI in

    2007 but the Medicare reimbursement in 2007 was only $470.91.[35]

    Many insurance companies require

    preapproval of an MRI procedure as a condition for coverage.

    In the US, theDeficit Reduction Act of 2007significantly reduced reimbursement rates paid by federal

    insurance programs for the equipment component of many scans, shifting the economic landscape. Many

    private insurers have followed suit.[citation needed]

    [edit]Safety

    A number of features of MRI scanning can give rise to risks.

    These include:

    Powerful magnetic fields Cryogenic liquids Noise

    http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=26http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=26http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=26http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-33http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-33http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-33http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-34http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-34http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-34http://en.wikipedia.org/w/index.php?title=Deficit_Reduction_Act_of_2007&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=Deficit_Reduction_Act_of_2007&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=Deficit_Reduction_Act_of_2007&action=edit&redlink=1http://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=27http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=27http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=27http://en.wikipedia.org/wiki/File:2009_niams_oai_hi.jpghttp://en.wikipedia.org/wiki/File:2009_niams_oai_hi.jpghttp://en.wikipedia.org/wiki/File:2009_niams_oai_hi.jpghttp://en.wikipedia.org/wiki/File:2009_niams_oai_hi.jpghttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=27http://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/w/index.php?title=Deficit_Reduction_Act_of_2007&action=edit&redlink=1http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-34http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-33http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=26
  • 8/3/2019 MRI 1

    14/42

    ClaustrophobiaIn addition, in cases whereMRI contrast agentsare used, these also typically have associated risks.

    [edit]Magnetic field

    Most forms of medical or biostimulation implants are generally consideredcontraindicationsfor MRI

    scanning. These includepacemakers,vagus nerve stimulators,implantable cardioverter-defibrillators, loop

    recorders, insulin pumps,cochlear implants, deep brain stimulators. Patients are therefore always asked for

    complete information about all implants before entering the room for an MRI scan. Several deaths have

    been reported in patients with pacemakers who have undergone MRI scanning without appropriate

    precautions.[citation needed] To reduce such risks, implants are increasingly being developed to make them able

    to be safely scanned[36]

    , and specialized protocols have been developed to permit the safe scanning of

    selected implants and pacing devices.

    Ferromagneticforeign bodies such asshellfragments, or metallic implants such assurgical

    prosthesesandaneurysmclips are also potential risks. Interaction of the magnetic and radio frequency

    fields with such objects can lead to trauma due to movement of the object in the magnetic field or thermal

    injury from radio-frequencyinduction heatingof the object.[citation needed]

    Titaniumand its alloys are safe from movement from the magnetic field.

    In theUnited Statesa classification system for implants and ancillary clinical devices has been developed

    by ASTM International and is now the standard supported by the US Food and Drug Administration:

    MR Safe sign

    MR-SafeThe device or implant is completely non-magnetic, non-electrically conductive, and non-

    RF reactive, eliminating all of the primary potential threats during an MRI procedure.

    http://en.wikipedia.org/wiki/MRI_contrast_agenthttp://en.wikipedia.org/wiki/MRI_contrast_agenthttp://en.wikipedia.org/wiki/MRI_contrast_agenthttp://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=28http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=28http://en.wikipedia.org/w/index.php?title=Magnetic_resonance_imaging&action=edit&section=28http://en.wikipedia.org/wiki/Contraindicationhttp://en.wikipedia.org/wiki/Contraindicationhttp://en.wikipedia.org/wiki/Contraindicationhttp://en.wikipedia.org/wiki/Artificial_pacemakerhttp://en.wikipedia.org/wiki/Artificial_pacemakerhttp://en.wikipedia.org/wiki/Artificial_pacemakerhttp://en.wikipedia.org/wiki/Vagus_nerve_stimulationhttp://en.wikipedia.org/wiki/Vagus_nerve_stimulationhttp://en.wikipedia.org/wiki/Vagus_nerve_stimulationhttp://en.wikipedia.org/wiki/Implantable_cardioverter-defibrillatorhttp://en.wikipedia.org/wiki/Implantable_cardioverter-defibrillatorhttp://en.wikipedia.org/wiki/Implantable_cardioverter-defibrillatorhttp://en.wikipedia.org/wiki/Cochlear_implanthttp://en.wikipedia.org/wiki/Cochlear_implanthttp://en.wikipedia.org/wiki/Cochlear_implanthttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-35http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-35http://en.wikipedia.org/wiki/Magnetic_resonance_imaging#cite_note-35http://en.wikipedia.org/wiki/Ferromagnetichttp://en.wikipedia.org/wiki/Ferromagnetichttp://en.wikipedia.org/wiki/Shell_(projectile)http://en.wikipedia.org/wiki/Shell_(projectile)http://en.wikipedia.org/wiki/Shell_(projectile)http://en.wikipedia.org/wiki/Surgical_prostheticshttp://en.wikipedia.org/wiki/Surgical_prostheticshttp://en.wikipedia.org/wiki/Surgical_prostheticshttp://en.wikipedia.org/wiki/Surgical_prostheticshttp://en.wikipedia.org/wiki/Aneurysmhttp://en.wikipedia.org/wiki/Aneurysmhttp://en.wikipedia.org/wiki/Aneurysmhttp://en.wikipedia.org/wiki/Induction_heatinghttp://en.wikipedia.org/wiki/Induction_heatinghttp://en.wikipedia.org/wiki/Induction_heatinghttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Titaniumhttp://en.wikipedia.org/wiki/Titaniumhttp://en.wikipedia.org/wiki/United_Stateshttp://en.wikipedia.org/wiki/United_Stateshttp://en.wikipedia.org/wiki/United_Stateshttp://en.wikipedia.org/wiki/File:MR_conditional_sign.svghttp://en.wikipedia.org/wiki/File:MR_conditional_sign.svghttp://en.wikipedia.org/wiki/File:MR_safe_sign.svghttp://en.wikipedia.org/wiki/File:MR_safe_sign.svghttp://en.wikipedia.org/wiki/File:MR_conditional_sign.svghttp://en.wikipedia.org/wiki/File:MR_conditional_sign.svghttp://en.wikipedia.org/wiki/File:MR_safe_sign.svghttp://en.wikipedia.or