Top Banner

of 33

Mr i Summary

Apr 14, 2018

Download

Documents

Hector Raul
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Mr i Summary

    1/33

    Medical Imaging and Pattern

    Recognition

    Lecture 8

    Magnetic Resonance ImagingOleh Tretiak

  • 7/30/2019 Mr i Summary

    2/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    2

    Medical Imaging Modalities:

    History 1895: X-ray

    ~1950: Ultrasound

    ~1955: Radionuclide

    1972: CT

    ~1980: MRI

    Nobel Prize

  • 7/30/2019 Mr i Summary

    3/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    3

    MRI Procedures

    Magnetic Resonance Angiography (MRA)

    Body MRI

    Cardiac MRI

    Chest MRI

    Head MRI

    Musculoskeletal MRI Spine MRI

    Functional MRI of the Brain (fMRI)

  • 7/30/2019 Mr i Summary

    4/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    4

    Full Carotid Artery MRI

    There are four carotid arteries, two oneach side of the neck: right and leftinternal carotid arteries, and right andleft external carotid arteries.

  • 7/30/2019 Mr i Summary

    5/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    5

    Cardiac MRI: Akinetic Wall

    Animated clip and contrast image

  • 7/30/2019 Mr i Summary

    6/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    6

    Cardiac MRI: Valvular Reflux

    Reduced heart function due to aortic valve dysfunction.

  • 7/30/2019 Mr i Summary

    7/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    7

    Chest MRI

  • 7/30/2019 Mr i Summary

    8/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    8

    Head MRI

    Cerebral Aneurism - Schematic

  • 7/30/2019 Mr i Summary

    9/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    9

    Aneurysm

  • 7/30/2019 Mr i Summary

    10/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    10

    Musculoskeletal MRI

    Left: normal knee. Right: torn anterior

    cruciate ligament

    QuickTime and aTIFF (Uncompressed) decompressor

    are needed to see this picture.

  • 7/30/2019 Mr i Summary

    11/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    11

    Spine MRI

  • 7/30/2019 Mr i Summary

    12/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    12

    Functional MRI of the Brain

  • 7/30/2019 Mr i Summary

    13/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    13

    Strengths of MRI

    Images of soft-tissue structures of the body, such as

    the heart, lungs, liver, are clearer and more detailed

    MRI can help evaluate the function as well as the

    structure

    Invaluable tool in early evaluation of tumors

    MRI contrast materials are less harmful than those

    used in X-ray or CT

    Fast, non-invasive angiography

    Exposure to radiation is minimal (non-ionizing)

  • 7/30/2019 Mr i Summary

    14/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    14

    Risks and Weaknesses

    Metal implants may cause problems

    Problems with claustrophobia

    MRI is to be avoided during the first 12

    weeks of pregnancy

    Bone is usually better imaged with X-

    rays

    MRI typically costs more than CT

  • 7/30/2019 Mr i Summary

    15/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    15

    Magnetic Materials

  • 7/30/2019 Mr i Summary

    16/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    16

    Nuclear Magnetism

    Atomic nuclei have intrinsic quantized magneticmoments

    No magnetic field Strong magnetic field

  • 7/30/2019 Mr i Summary

    17/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    17

    Nuclear Magnetic Resonance

    A transverse RF field at the appropriate frequency causes the

    moments to tilt from the magnetizing field axisB B B B

    Ht = Acost

    = H0

    Ht = Acost

    H0

    H0 H0 H0 H0

  • 7/30/2019 Mr i Summary

    18/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    18

    Excitation of SpinsIn a static field, the spins line up with the magnetic field. There is

    no external magnetic signal.

    If a magnetic nucleus is in field strength H0 (Larmour frequency

    0), and a RF field normal to H0 and at frequency 0 is applied, themagnetic moments move away (tip away) from the direction ofHo.

    Tip angle is proportional to the magnitude and duration of the

    exciting field (RF field).

    This is a resonance phenomenon. If, the RF field frequency, is

    different from 0, the tip angle is equal to 0.The motion of the magnetization is described by the Bloch

    equation.

  • 7/30/2019 Mr i Summary

    19/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    19

    Excitation of Spins

    H0

    AT/

    0 t T

    H1 Acos0t

  • 7/30/2019 Mr i Summary

    20/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    20

    Nuclear Magnetic Resonance

    When a nuclear magnet is tiltedaway from the external magneticfield it rotates (precesses) at theLarmour frequency. For hydrogen,

    the Larmour frequency is 42.6 MHzper Tesla.

    0 H0

    0

  • 7/30/2019 Mr i Summary

    21/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    21

    Slice Selection If the external field is equal to Hz(x, y, z) = H0 + zGz,

    and an exciting field at frequency w0 is applied, the

    slice z=0 is selected. That is, spins in that plane are

    tipped, while other planes are not affected.

    Slice profile is proportional to the Fourier transform of

    the RF field envelope. Short, strong pulse thick

    plane. Weak, long pulse thin plane.

    The plane can be selected by field gradients.

  • 7/30/2019 Mr i Summary

    22/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    22

    Slice Selection Examples

    Hz H0 xGx

    Hx Acos0t

    Hz

    Hz

    Gradient Planex y-z

    y x-z

    z x-y

    x-y-z oblique

  • 7/30/2019 Mr i Summary

    23/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    23

    External Signal from Resonance

    Spinning magnetization induces a voltage inexternal coils, proportional to the size ofmagnetic moment and to the frequency.

    H0

    0

    s(t)

  • 7/30/2019 Mr i Summary

    24/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004

    24

    Bloch Equation

    Motion of the magnetization vector is describedby the Bloch equation. The cross product term

    leads to magnetic resonance, while T1 and T2

    terms lead to relaxation (decay) of transient

    effects. For living tissues, T1 ~ 0.2 to 1 sec, T2 ~0.02 to 0.1 sec.

    dM

    dt MH

    Mx i Myj

    T2

    (MzM0)k

    T1

  • 7/30/2019 Mr i Summary

    25/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 25

    Imaging: two boxes.

    Assume the body consists of two samples, a in stronger

    field, b in a weaker field. s(t) is the sum of sinewaves at the

    two frequencies. The Fourier transform ofs(t) will have two

    lines corresponding to the frequencies (locations) of the two

    samples. The strength of each line is proportional to the

    amount of material in each location.

    a b-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    0

    0.

    3

    0.

    6

    0.

    9

    1.

    2

    1.

    5

    1.

    8

    2.

    1

    2.

    4

    2.

    7 3

    3.

    3

    3.

    6

    3.

    9

    s(t)

  • 7/30/2019 Mr i Summary

    26/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 26

    Imaging: linear object

    Tube of nonuniform thickness in linearly

    varying magnetic field. The Fourier transformof the resonance signal is proportional to thetube thickness.

    Fourier transformofs(t)

    Tube, parts are narrow, parts

    are wide Map of tube thickness

  • 7/30/2019 Mr i Summary

    27/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 27

    Imaging: two-dimensional object

    Given a thin plate of magnetic moments in thex-y

    plane. The magnetic fields has linear variation

    (gradients) in thexand ydirections. The resulting total

    magnetic resonance signal is proportional to the Fourier

    transform ofm(x, y) along a line in the Fourier plane.

    HzH0 Gxx Gyy

    s(t) Kei0t m(x,y)ei(GxxGy )t

    Kei0t

    FT [m(x,y)](x Gxt,y Gyt)

  • 7/30/2019 Mr i Summary

    28/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 28

    Diagram of Fourier plane path

    By successively applying different combinations ofgradients we can measure the Fourier transform over

    the whole plane. Then take the inverse transform to

    compute m(x, y).

    x

    y

    m(x, y)

    x

    y

    Gx GcosGy Gsin

  • 7/30/2019 Mr i Summary

    29/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 29

    Huge Magnetic Fields

    Magnetization proportional to external field

    Frequency proportional to external field

    Voltage proportional to the product of magnetizationand frequency

    Signal proportional to square of magnetic field

    Higher field > better image quality!

    We can get good image quality (for someprocedures) by scanning for a longer time

    Problems with motion and with patient comfort

  • 7/30/2019 Mr i Summary

    30/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 30

    Contrast Mechanisms Intrinsic contrast mechanisms: m, proton

    density; T1 and T2, relaxation times.

    Chemical environment affects signals andcan produce contrast. For example, resonant

    frequencies for fat and muscle are different.

    Motion affects MRI signal. Flow and diffusion

    can be measured.

  • 7/30/2019 Mr i Summary

    31/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 31

    MRI Scanner

  • 7/30/2019 Mr i Summary

    32/33

    MIPR Lecture 8Copyright Oleh Tretiak, 2004 32

    Open Bore MRI Scanner

    Avoid claustrophobia

    Lower image quality

  • 7/30/2019 Mr i Summary

    33/33

    MIPR Lecture 8C i ht Ol h T ti k 2004 33

    Summary of MRI Rich set of contrast mechanisms.

    Versatile slice selection. Tomographic andprojection images are possible.

    Non-ionizing. No known harmful effects,except heating.

    Resolution not as good as in X-ray.

    Expensive and slow. New technique. Rapid and continuing

    progress.