Top Banner
+ V + V A A A M 3 ~ B A C ET1 ET2 ET3 GND VM1 VM2 AM1 AM2 AM3 Load Generator_torque T0 := 1.2 s AMPL := -3.2k Load_torque AMPL := 3.204k T0 := 1 s ASM_2 LS1 := 0.1726m H LS2 := 0.20222m H R1 := 4.8m Ohm LM := 9.81m H J := 10.5 kg m % R2 := 13.3m Ohm P := 2 T Electrical Machine Design Suite
60
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Motor Design Suite V12

+ V

+ V

A

A

A

M3 ~BA

C

ET1

ET2

ET3

GND

VM1

VM2

AM1

AM2

AM3

Load

Generator_torque

T0 := 1.2 s

AMPL := -3.2k

Load_torqueAMPL := 3.204k

T0 := 1 s

ASM_2

LS1 := 0.1726m HLS2 := 0.20222m H

R1 := 4.8m Ohm

LM := 9.81m H

J := 10.5 kg m%

R2 := 13.3m Ohm

P := 2

T

Electrical Machine Design Suite

Page 2: Motor Design Suite V12

Quick IntroductionAnsoft offers the most complete solution to electrical machine design

in the industry through its Electrical Machine Design Suite

What is the Electrical Machine Design Suite?Five combinable tools which assist engineers in designing and analyzing electrical machinesIntegrates electromagnetic, circuit, and system engineering using a common desktop environment

The Electrical Machine Design Suite includes:RMxprt – for machine design Maxwell 2D/3D – for finite element analysisOptimetrics – for optimizationSimplorer – for system analysisePhysics – for thermal and stress analysis

Page 3: Motor Design Suite V12

Electrical Machine Design Suite

RMxprt

Maxwell 2D Maxwell 3D

SIMPLORER

14 types of motors/generators

FEA FEA

Equivalent circuits

Co-simulation

ePhysics

Optimetrics

Page 4: Motor Design Suite V12

Electric Machine Design Suite A Complete Solution for Modern Electric Machines and Drives Design

Equivalent Circuit Model : High Fidelity Physics Based Model

Fast Analytical Solution: Narrow the Design Space

Parametric AnalysisOptimization

Magnetostatic/Eddy Current Analysis using FEA

Parametric AnalysisOptimization

AHAJA ×∇×+×∇+∇−∂∂−=×∇×∇ vVt cs σσσυ

scf

ff

ff uu

dtid

LiRddtdA

aSlN

d =+++Ω∫∫ 0=−dtduCi c

f

Field Equation:

Circuit Equation:

Motion Equationexternalem TTm +=+λωα

Simultaneous Equations:

Transient Analysis using FEA

Parametric Analysis

A_PHASE_N1

A_PHASE_N2

B_PHASE_N1

B_PHASE_N2

C_PHASE_N1

C_PHASE_N2

ROTB1

ROTB2

EMSSLink1

EMF2

RA

RB

RC

A

IA

A

IB

A

IC

1750.023

0.023

0.023

theta>90 AND theta<150theta>150 AND theta<210

theta>210 AND theta<270

theta>270 AND theta<330theta>330 OR theta<30

ICA:

theta>30 AND theta<90

EMF1 175

E1

R1

E2

R2

E3

R3

E4

R4

E5

R5

E6

R6

ctrl_1:=OFFctrl_6:=OFF

ctrl_1:=ON

ctrl_6:=ONctrl_1:=ONctrl_2:=ON

ctrl_1:=OFFctrl_2:=OFF

ctrl_2:=ONctrl_3:=ON

ctrl_2:=OFF

ctrl_3:=ONctrl_4:=ON

ctrl_4:=ONctrl_5:=ON

ctrl_5:=ON

ctrl_6:=ON

ctrl_5:=OFFctrl_6:=OFF

ctrl_3:=OFF

ctrl_3:=OFFctrl_4:=OFF

ctrl_4:=OFFctrl_5:=OFF

A AM_IGBT

+ VVBC

+ VVGE4

MASS_ROTB1

Drive System Integration with Manufacturer’s IGBTs

EMF

A

IA

A

IB

A

IC

175

ICA:

EMF 175

A AM_IGB

V+ VVBC

A_PHASE_N1

B_PHASE_N1

C_PHASE_N1

ROT1

ROT2

ECE

ECELink

T

FM_ROT

PP:=

ON:=

OFF:=

THRESH:=4

HYST:=

EQU theta_elect := PP * ECELink

theta := MOD(theta_elect

ωω+IGBT

IGBT IGBT

IGBTIGBT

D2 D3

Drive System Design

Phase CurreIAIBIC

t

1.00

-1.00

0

-500.0

500.0

0 17.27m10.00m

TorquTo

t

400.0

-100.0

0

200.0

0 17.2710.00

Phase VoltagV_A

t

300.0

-300.0

0

-200.0

200.0

0 17.2710.00

Analytical Based Model

System Level IGBT

Von Mises stress

Thermal and Stress Analysis

A_PHASE_N1

A_PHASE_N2

B_PHASE_N1

B_PHASE_N2

C_PHASE_N1

C_PHASE_N2

ROTB1

ROTB2

EMSSLink1

EMF2

RA

RB

RC

A

IA

A

IB

A

IC

1750.023

0.023

0.023

theta>90 AND theta<150theta>150 AND theta<210

theta>210 AND theta<270

theta>270 AND theta<330theta>330 OR theta<30

ICA:

theta>30 AND theta<90

EMF1 175

E1

R1

E2

R2

E3

R3

E4

R4

E5

R5

E6

R6

ctrl_1:=OFFctrl_6:=OFF

ctrl_1:=ON

ctrl_6:=ONctrl_1:=ONctrl_2:=ON

ctrl_1:=OFFctrl_2:=OFF

ctrl_2:=ONctrl_3:=ON

ctrl_2:=OFF

ctrl_3:=ONctrl_4:=ON

ctrl_4:=ONctrl_5:=ON

ctrl_5:=ON

ctrl_6:=ON

ctrl_5:=OFFctrl_6:=OFF

ctrl_3:=OFF

ctrl_3:=OFFctrl_4:=OFF

ctrl_4:=OFFctrl_5:=OFF

A AM_IGBT

+ VVBC

+ VVGE4

MASS_ROTB1

Complete Transient FEA -Transient System Co-simulation

Design Requirements

Size/Weight EfficiencyTorqueSpeedCogging/RippleInverter MatchingThermalStressManufacturabilityCost

Page 5: Motor Design Suite V12

RMxprt

Page 6: Motor Design Suite V12

What is RMxprt ?• Analytical Design Software for Electric Machines• User can calculate machine performance, make material and size decisions• Flexible design and optimization process for rotating electric machines which perform hundreds of "what if" analyses in a matter of seconds

Machine Types• Induction Machines : Three-Phase, Single-Phase• Synchronous Machines : Line-Start PM, Adjustable Speed PM,

Salient Pole, Non-Salient Pole• Brush commutated: DC, Permanent Magnet DC, Universal, Claw-

pole Alternator• Electronically commutated: Brushless PM, Switched Reluctance

Page 7: Motor Design Suite V12

User Inputs

Page 8: Motor Design Suite V12

Typical Results

Page 9: Motor Design Suite V12

Complete Report and Curves

Page 10: Motor Design Suite V12

RMxprt to Maxwell 2D linkAutomatic creation of complete transient design including: Geometry, Materials, Master/Slave Boundaries, Sources, Mesh Operations, External Circuits, Motion, and Solution SetupAccess this by clicking on Analysis > Setup > Create Maxwell Design

Page 11: Motor Design Suite V12

RMxprt to Maxwell 3D linkComplete geometry creationOne-click FEA designOption for periodic or full modelsAutomatic update with project variables

Geometry creation and material assignmentGeneral and dedicated machine partsCreate new machine types with arbitrary combinationsDimension variables supported

Page 12: Motor Design Suite V12

Arbitrary Winding Configurations

Lap winding with coil pitch=1

Concentric winding

Double-layer lap winding

Single-layer lap winding

DC winding

Page 13: Motor Design Suite V12

Common Slot Type Support

squirrel-cage coresSingle/double

squirrel-cage coresSingle/double

Inner/outer AC/DC armature cores

Inner/outer AC/DC armature cores

Page 14: Motor Design Suite V12

Maxwell

Page 15: Motor Design Suite V12

What is Maxwell?Magnetic and Electric Finite Element Field SolversStatic, Quasi-Static and Transient (time-domain) solutionsLinear and non-linear, isotropic and anisotropic, and laminated materialsParametric and Optimization capabilities including statistical, sensitivity and tuning analysisCo-simulation with SimplorerDirect link from RMxprtDirect link to ePhysics

Page 16: Motor Design Suite V12

Maxwell Desktop

Project Manager Window

History Tree Window

3D modeler Window

Message Window

six windows

Properties Window

Progress Window

Page 17: Motor Design Suite V12

Powerful Geometry UtilitiesGeometry utilities automatically create complicated 2D/3D geometriesShape optimized for minimum count, good quality mesh, significantly enhancing meshing success rate

Page 18: Motor Design Suite V12

General Machine Parts

Components

for most

machines

Page 19: Motor Design Suite V12

Geometry Variables Sharing with RMxprt

Maxwell geometry

changed in RMxprt

Convenient for geometry parametric sweep and

optimization

Convenient for geometry parametric sweep and

optimization

automatic update with variables

Maxwell geometry automatic update

with variables changed in RMxprt

Page 20: Motor Design Suite V12

3-Tier Library StructureSystem (global) level – predefined from AnsoftUser Library – to be shared among several users at a company (can be encrypted)Personal libraries - to be used only by single user (can be encrypted)

Page 21: Motor Design Suite V12

Advanced Analysis FeaturesDistributed Analysis – for computing farm to Options for remote or distributed analysis capability – can solve different rows of a parametric table on different PC’s (Tools > Options > Analysis) Remote Solve – to solve on a single remote computer (must have separate license)Optional convergence stopping criterion –use of % change of any output parameter (such as loss or torque) as an additional convergence stopping criterion, but does not impact adaptive refinement

Page 22: Motor Design Suite V12

Double Rotor Motion

Rotor II

Rotor I

Stator

Two Bands in Transient SolverFor transient motion solver, two bands with two independently moving objects now allowedBoth rotational and translational solvers can handle this

Page 23: Motor Design Suite V12

Multiple end connected conductors

Induction Motor with Dual Rotor Cages

squirrel cage I

squirrel cage II

For transient solver, can have for independently connected squirrel cage rotors

Page 24: Motor Design Suite V12

External Circuit CouplingUse Maxwell Circuit Editor for control and drive circuitryRe-adjusts time step of field computation when:

SwitchingSharp variations in external sourcesLarge change in winding inductance

fivewindows

Project and Components Window

Properties Window

Schematic Window

Message Window

Progress Window

Page 25: Motor Design Suite V12

Maxwell Co-simulation with Simplorer2D transient co-simulation: Maxwell V12 – Simplorer V8

Improved performance with asynchronous time steps

Next step is to support 3D: Maxwell V12.x – Simplorer V8.x

Maxwell SIMPLORER

Lumped fieldcoupling parameters

Equivalent circuitcoupling parameters

Page 26: Motor Design Suite V12

Dynamic DemagnetizationSource Design Target Design2-step

process

Page 27: Motor Design Suite V12

Dynamic Demagnetization - Results

Source H fieldin the PM

Target H fieldin the PM

Page 28: Motor Design Suite V12

:

)(][

)()]([

1

1

pc

pc

pca

tk

t

H

HH

HHT

µ

µσ

∂∂

=

+∂∂

=×∇×∇

Laminated Materials Core Loss Field Effects

Note: this can have an impact on the torque in a motor

Page 29: Motor Design Suite V12

Typical Maxwell 2D/3D Results

Page 30: Motor Design Suite V12

Optimetrics

Page 31: Motor Design Suite V12

What is Optimetrics ?Optimetrics enables engineers to determine the best design variation among a model's possible variations.

Create the original model, the nominal design, and then define design parameters that vary

Optimetrics includes five unique capabilities: 1. Parametrics: Define one or more variable sweep definitions, each specifying a series of variable

values within a range. Easily view and compare the results using plot or table to determine how each design variation affects the performance of the design.

2. Optimization: Identify the cost function and the optimization goal. Optimetrics automatically changes the design parameter(s) to meet the goal. The cost function can be based on any solution quantity that can be computes, such as field values, R,L,C force, torque, volume or weight.

3. Sensitivity: Determine the sensitivity of the design to small changes in variables in the vicinity of a design point. Outputs include: Regression value at the current variable value, First derivative of the regression, Second derivative of the regression

4. Tuning: Variable values are changed interactively and the performance of the design is monitored. Useful after performing an optimization in which Optimetrics has determined an optimal variable value, and you want to fine tune the value to see how the design results are affected.

5. Statistical: shows the distribution (Histogram) of a design output like force, torque or loss caused by a statistical variation (Monte Carlo) of input variables.

Page 32: Motor Design Suite V12

Optimetrics Module (cont.)

Distributed Parametrics and Optimization

Seamless setupIntegrated with force, torque, matrixComplete support of Transient solution

Page 33: Motor Design Suite V12

Optimetrics Module (cont.)Integrated with external circuit

Optimize on ‘voltage’in MaxwellSetup variables in

Maxwell Circuit Editor

Page 34: Motor Design Suite V12

Optimetrics ExampleOptimization of a starter-alternator packThe pack contains a motor used also as alternatorThree-phase claw pole motorPermanent Magnets are added between teeth

Page 35: Motor Design Suite V12

Optimization of the Geometry

Want to see the influence on the output torque

Tooth angle Magnet thickness Magnet length

Page 36: Motor Design Suite V12

ResultsTransient analysis run for the optimized designInitial Peak torque: 63.40 NmOptimized Peak Torque: 67.42 Nm

Initial Optimized

Page 37: Motor Design Suite V12

Simplorer

Page 38: Motor Design Suite V12

What is Simplorer ?

SUM2_6

CONST

id_ref

G(s)

GS2

I

I_PART_id

GAINid

LIMIT

yd

UL := 9

LL := -9

GAIN

P_PART_id

KP := 0.76

12

R1 R2 R3 R450 1k 1k50

C1 C2

3.3u3.3u

V0 := 5 V0 := 0

N0005

N0003N0004

N0002

Circuits

Block Diagrams

State Machines

• Multi-domain, system simulator for designing high performance systems

• Commonly used by the automotive, aerospace/defense, and industrial automation industries.

• Integrated analysis with electromagnetic simulation tools (Maxwell, PExprt, RMxprt, Q3D, HFSS)

• Three Basic Simulation Engines:CircuitsBlock DiagramsState Machines

• Analysis Types: DC, AC, Transient• Co-simulation with Maxwell and Simulink• Statistical Analysis and Optimization• VHDL-AMS Capability

IMP = 0

IMP = 1IMP = 0IMP = 1

IMP = 0 and RLine.I <= ILOW

IMP = 1 and RLine.I >= IUP

IMP = 0 and RLine.I >= IUP

IMP = 1 and RLine.I <= ILOW

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

Page 39: Motor Design Suite V12

Complete System Design

ThermalElectricalMechanical Hydraulic

MagneticLogic

Analog Digital

Component

Subsystem

System

Page 40: Motor Design Suite V12

SIMPLORER MethodologyElectrical/Electronics

(analog and digital circuits)Digital Control Systems

(state machine)

12

R1 R2 R3 R450 1k 1k50

C1 C2

3.3u3.3u

V0 := 5 V0 := 0

N0005

N0003N0004

N0002

C14.7m

MS3 ~BA C

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

XOR

XOR2_DEL1

XOR

XOR2_DEL2

AND

AND2_DEL1

AND

AND2_DEL2 OR

OR2_DEL1

SUM

Carry

IMP = 0

IMP = 1IMP = 0IMP = 1

IMP = 0 and RLine.I <= ILOW

IMP = 1 and RLine.I >= IUP

IMP = 0 and RLine.I >= IUP

IMP = 1 and RLine.I <= ILOW

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

A

B

C

Analog Control, Mechanics(block diagram)

SUM2_6

CONST

id_ref

G(s)

GS2

I

I_PART_id

GAINid

LIMIT

yd

UL := 9

LL := -9

GAIN

P_PART_id

KP := 0.76

Each part of a complex technical system is represented by the most appropriate modeling language

Page 41: Motor Design Suite V12

Multi Domain Design

Power Converter

Electro Mechanics

Sensors

Transformer

Control

Multitude of DomainsMultitude of Tools & Methods

MechanicsUtility

Page 42: Motor Design Suite V12

Simulator Coupling TechnologySimulinkMaxwell2D/3D

ElectromagnetismElectro mechanics

SIMPLORER Simulation Data BusSimulator Coupling Technology

MathCadC/C++ Interface

CircuitSimulator

Block DiagramSimulator

State MachineSimulator

VHDL-AMSSimulator

Model DatabaseElectrical, Blocks, States, Machines, Automotive, Hydraulic,

Mechanics, Power, Semiconductors…

Page 43: Motor Design Suite V12

Integrated Design EnvironmentAll three basic simulation types are on same desktop:

Circuits, Block Diagrams, State Machines

Page 44: Motor Design Suite V12

Power Library

Power System and Cable Models

Single Phase Power Supply

Ideal Three Phase Power Supply

Three Phase Power Supply with Impedance

WIRE - Gamma Model

Wire T-Model

Inverter Topologies

Line-commutated Converters

B2 Diode Bridge

B2 Fully Controlled

B2 Half-Controlled, Symmetrical

B2 Half-Controlled, Asymmetrical

B6 Diode Bridge

Two Level Inverter Equivalent Circuit

Three Phase Two Level Inverter

Single Phase Two Level Inverter

Three Phase Three Level Inverter

Single Phase Three Level Inverter

Control Algorithms

Two Level Square Wave

Two Level Natural Sampling

Three Level Single Phase

Three Level Three Phase

Load Models

Three Level Single Phase NS

Three Level Three Phase NS

Four Quadrant Current Control

Four Quadrant Natural Sampling

B6 Thyristor Bridge

B6 Bridges - Inverse Parallel Connection

B12 Diode Bridge

B12 Thyristor Bridge Parallel Connection

B12 Thyristor Bridge Cascade

B24 Thyristor Bridge

Single Phase A.C. Chopper

Three Phase A.C. Chopper

DC Link

Three Phase RL Load

Logic

Dead Time

Power LibraryApplications:• AC/DC Converters• Inverters (DC/AC)• Drive Systems• Power Quality• Alternative Power

Industries:• Industrial Automation• Drives Manufacturers• EV/EHV• Power Conversion• Power Quality

+ Battery and Fuel Cell

Page 45: Motor Design Suite V12

Mechanical Elements LibraryRotational

Mass

Translational

Mass

Coordinate Transformation

Rotational-Rotational

Rotational-Translational

Translational-Rotational

SYMP Synchronous Machine Permanent Excitation

SYMP Synchronous Machine Permanent Excitation w Damper

Electrical Machines

DCMP DC-Machine Permanent Excitation

ASMS Slip Ring Induction Machine

Rigidity

Rigidity

Torque Source

Ground

Angular Velocity Source

Velocity Source

Ground

Force Source

Translational-Translational

Mechanical Systems

Applications:• Drive Trains• Electro-Hydraulic

Systems• Electro-Mechanical

Systems• Load Variations

Industries:• Automotive Suppliers• Drive Manufacturers• Industrial Automation• Defense• Aerospace

Page 46: Motor Design Suite V12

Simplorer to Maxwell ECE Coupling

Page 47: Motor Design Suite V12

Simplorer - Simulink Cosimulation

SIMPLORER v8 SIMPLORER v8 SIMPLORER v8

Simulation initiated from SIMPLORERSimulation initiated from SIMPLORERSimulinkSimulink invoked from SIMPLORERinvoked from SIMPLORER

Page 48: Motor Design Suite V12

d-q-Phase Transformation

Control Signal Generation / Phase Transformation

Vector control based on d-q transformation

d-q transformation using built in math engine

On-time computation for phase A and B for inverter control based on Controller output data

ICA:

TP := 0.0002ustmax := 10.t0a := 0t0b := 0t0c := 0

EQU

yalph := cos(theta_el) * yd.VAL - sin(theta_el) * yq.VAL theta_el := SYMPOD1.PHIDEG * PI / 180.ybeta := sin(theta_el) * yd.VAL + cos(theta_el) * yq.VAL TEc := (yc / ustmax + 1) * TP / 2.

ya := yalph i1alph := SYMPOD1.I1Ayb := -0.5 * yalph + ybeta * sqrt(3.) / 2. i1beta := (SYMPOD1.I1A + 2 * SYMPOD1.I1B) / sqrt(3.)yc := -ya - yb i1d := i1alph * cos(theta_el) + i1beta * sin(theta_el)TEa := (ya / ustmax + 1) * TP2 i1q := i1beta * cos(theta_el) - i1alph * sin(theta_el)

TEb := (yb / ustmax + 1) * TP2theta_m := theta_el / 3.

Page 49: Motor Design Suite V12

Speed and Torque ControlSpeed Control

I_nI_iq n

GAIN

GAINY t

GAIN

id

I

KI := 29.02kUL := 10LL := -10

GAIN

P_PART_n

KP := 0.1161k

Controller design using block diagrams

Speed Profile from Data File

Reference Torque Determination

ust_in

GAIN iq

ust

d-q-Current Controller

I

G(s) GS1

UL := 9m_refLL := -9 P_Iq

G(s)

GS2

I

I_id

LIMIT GAIN LIMIT

yq KP := 0.76

id_refCONST

KI := 80

yd P_id

LIMIT GAIN

UL := 9 KP := 0.76LL := -9

Page 50: Motor Design Suite V12

DC Motor Drive System

L_R

L_S

L_T

ET1

ET2

ET3

CD1m

R_R

R_S

R_T

Yt

LOAD

CONTR_OUT

THRES2 := 2.5

VAL2 := 1

THRES1 := -2.5

VAL1 := -1

-16.66m

DCM.N P_GAIN

KP := 50I_GAIN

KI := 20

LIMITER

UL := 20LL := 0

10m

GAIN GAIN

I

LIMIT

CONST

N_REF

16.6667

0.3m

M

DCMRA := 1.2

LA := 9.5mKE := 0.544

J := 4m

A+ AM1D1 D2 D3

D4 D5 D6

D7

TR

CONST

CLOCK

.1m

0 50.00mT

15.00

0 0

10.00

0

0

100.00m

100.00m

50.00m

50.00m

Motor torque and load torque

Page 51: Motor Design Suite V12

Servo Drive SystemET1

ET2

ET3

R1

R2

R3

L1

L2

L3

10m

10m

10m

1m

1m

1m

D1 D2 D3

D4 D5 D6

C14.7m

ICA:

EQU

TP := 0.0002ustmax := 10.

GAIN

n

GAIN

ust_in

GAIN iq

Y t

ust

d-q-Current Controller

Speed Control

1,3 Nm at2000 rpm

Yt

M_LOAD

MS3 ~

BA CSYMPOD1

R1 := 1 L1D := 9.2mL1Q := 9.2mKE := 0.334

P := 3J := 5.55m

LOAD := SYMPOD1.N*0.00065 + M_LOAD.VAL

t0a := 0t0b := 0t0c := 0

Synchronous Machinepermanent excitation

Control Signal Generation / Phase Transformation

Phase Currents

t [s]

20

-25

0

-20

-15

-10

-5

5

10

15

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

Reference and Actual Speed

t [s]

1k

-1k

0

-0.75k

-0.5k

-0.25k

0.25k

0.5k

0.75k

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

DC Link VoltageC1.V [V]

t [s]

0.57k

0.53k0.53k

0.54k

0.54k

0.55k

0.55k

0.56k

0.56k

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

Position

t [s]

1.6k

-0.2k0

0.2k

0.4k

0.6k

0.8k

1k

1.2k

1.4k

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

Reference and Actual Torque

t [s]

40

-40

0

-30

-20

-10

10

20

30

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

QuickGraph92 * yd.VALyq.VAL

t [s]

8

-8

0

-6

-4

-2

2

4

6

0 0.450m 0.1 0.15 0.2 0.25 0.3 0.35

G(s)

GS2

I

I_id

GAIN

id

LIMIT

yq

UL := 9LL := -9

LIMIT

yd

UL := 9LL := -9

GAIN

P_id

KP := 0.76

P21

z2 := 1z5 := 0

P22

z2 := 0z5 := 1

t - t0b >= TP

t - t0b >= TEb

t0b := t

P11

z1 := 1z4 := 0t0a := t

P12

z1 := 0z4 := 1

P31

z3 := 1z6 := 0t0c := t

P32

z3 := 0z6 := 1

t - t0c >= TP

t - t0c >= TEct - t0a >= TEa

t - t0a >= TP

G(s) GS1

I

I_iq

I

I_n

KI := 29.02kUL := 10LL := -10

GAIN

P_PART_n

LIMIT

m_ref

KP := 0.1161k

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

CONST

id_ref

KI := 80

GAIN

P_Iq

KP := 0.76

theta_el:=SYMPOD1.PHIDEG * PI / 180.yalph:=cos(theta_el) * yd.VAL - sin(theta_el) * yq.VALybeta:=sin(theta_el) * yd.VAL + cos(theta_el) * yq.VALya:=yalphyb:=-0.5 * yalph + ybeta * sqrt(3.) / 2.yc:=-ya - ybTEa:=(ya / ustmax + 1) * TP2TEb:=(yb / ustmax + 1) * TP2TEc:=(yc / ustmax + 1) * TP / 2.i1alph:=SYMPOD1.I1Ai1beta:=(SYMPOD1.I1A + 2 * SYMPOD1.I1B) / sqrt(3.)i1d:=i1alph * cos(theta_el) + i1beta * sin(theta_el)i1q:=i1beta * cos(theta_el) - i1alph * sin(theta_el)theta_m:=theta_el / 3.

Page 52: Motor Design Suite V12

Generator System

+

V

+

V

+

V

A+

A+

A+ +

V

+

V

+

V

+

V

+

V

+

V

R1

R2

R3

L1

L2

L3

R4

1n

L4

1n

ET1

ET2

ET3

TH1

TH2

TH3

TH4

vm22 vm11vm33

TH5

TH6

vm_HS_U1

vm_HS_U2

vm_HS_U3

IGAIN

alpha2

KI := -0.1k

bypass:=0

Tmax:=-500

net_in:=1 * Unom

main:=1bypass:=1

Tmax:=-5000

net_in:=1 * Unom

Tmax:=-10000

net_in:=1 * Unom net_in:=1 * Unom

Tmax:=-15000Tmax:=-19000

net_in:=1 * Unom net_in:=1 * Unom

(t>=0.6) (t>=2.5) (t>=3.5) (t>=4.5) (t>=4.8)

SET: := con:=0

(t>=0.65) State10_3

con:=1

net_in:=1 * Unom

Tmax:=-500SET: := bypass:=1

(t>0.1)

soft

con:=1(t>=(0.65+T_con))

(t>=(0.65+(2*T_con)))

(t>=(0.65+(3*T_con)))

(t>=(0.65+(4*T_con))) (t>=(0.65+(6*T_con)))

(t>=(0.65+(5*T_con))) (t>=(0.65+(7*T_con)))

(t>=(0.65+(8*T_con)))

SET: ignit11:=0

vm1.V>0 and alpha.VAL<=risetime-1

t>th1+toff or vm1.V<=0

SET: ignit12:=0

SET: th1:=t

vm1.V<0 and alpha.VAL<= risetime-1

t>th1+toff or vm1.V>=0

SET: ignit31:=0

SET: th3:=t

vm3.V>0 and alpha.VAL<=risetime-1

t>th3+toff or vm3.V<=0

SET: := ignit32:=0

SET: := th3:=t

vm3.V<0 and alpha.VAL <= risetime-1

t > th3+toff or vm3.V>=0

SET: ignit21:=0

SET: th2:=t

vm2.V>0 and alpha.VAL<=risetime-1

t>th2+toff or vm2.V<=0

n_off2

SET: ignit22:=0

vm2.V<0 and alpha.VAL<=risetime-1

t>th2+toff or vm2.V>=0

EQU Yt ICA: EQU

tignit := alpha.VAL / (360 * freq)

freq := 50

toff := 1 / (2.1 * freq)

alpha

risetime := 120C_com := 10uUnom := 20k / 1.73

T_turbine := -5000

VA2_1

Pmech := T_turbine * ASM_1.N / 60 * 2 * 3.14 / 3

Star

High Voltage Low Voltage

Dy5 TFR3LP1TFR3LS1

am1 := 20k * sqrt(2) / sqrt(3)

FILE := asynchronous_wind_generator5_ssh__alpha.mdxTPERIO := 0.5

PHASE := 0PERIO := 0

Delta

M3 ~BA

C

R1 := 1.13333m

R2 := 1.7m

LS1 := 0.135667m

LS2 := 84.6667u

LM := 4.33333m

I1A0 := 0

I1B0 := 0

I1C0 := 0

I2A0 := 0

I2B0 := 0

I2C0 := 0

N0 := 1.49k

PHI0 := 0

LOAD := T_turbine

Reactive power compensation

Soft startbypass

Soft start curve for alpha

<---Timedependent changing of load torque caused by the wind

Thyristor Control

SET: := C_con:=100uSET: := T_con:=0.05

Time dependent changing of the capacitancesin the reactive power compensation

QuickGraph1ASM_1.N

t

1.70k

1.40k

1.60k

0 3.002.00

QuickGraph2vm1.Vvm2.Vvm3.V

t

40.00

-40.00

0

-25.00

25.00

0 3.002.00

SET: th1:=t

SET: th2:=t

DEL: ignit22 ## tignit

Page 53: Motor Design Suite V12

Inverter Drive System

i_a"Dc

T

30.00

-10.00

0

20.00

0 812.9m500.0m

t

ETR

t

ETS

t

ETT

TH11 TH12 TH13

TH14 TH15 TH16

TH21 TH22 TH23

TH24 TH25 TH26

UR US UT

USynR USynS USynT

UR

US

UT

ERS

ERS

EXT

v_soll

60

P

n_soll

100

P

un_soll

5m

LIMITER

um_sollB

10 -10

un

EXT

un_ist

0.04775omg"MasTacho"

NEG

NEG1

EXT

n_ist

omg"MasTacho"9.549

P

v_ist

0.16667m

I

s_ist

1

EXT

n6

9.549omg"MasTisch"

P

v6

0.16667m

I

s6

1

EXT

uni6

0.04775omg"MasTisch"

I

GRnI

350.385

P

GRnP

4.67

10 -10

ui_soll

LIMITER

ui_sollB

-7.57.5

ui

EXT

ui_ist

i_a"DcmpMotor"0.2

NEG

NEG2

I

GRiI

45.446-1010

P

GRiP

0.168

ustICA :

ICA1

VA1 :VA1_1

Start Sp

VSoll

NE1NE2

lTT2 lTT1

t Y

dssi

SR1

SR2

P2P1

NE3

NE4

NE5

NE6

NE7

NE8

NE9

NE10

W01 W02 W03

W04 W05 W06

V01 V02 V03

V04 V05 V06

Z11 Z21 Z12 Z22 Z13 Z23

Z14 Z24 Z15 Z25 Z16 Z26

NE11 NE12

NE13 NE14

NE15 NE16

NE17 NE18 NE19 NE20

NE21 NE22

NE23 NE24 NE25

NE26 NE27 NE28 NE29 NE30 NE31

NE32 NE33 NE34 NE35 NE36 NE37

NE38 NE39 NE40

vsoll

NE41

P

v_soll1

100

ssollsistsschl

T

7.500m

-2.500m

0

5.000m

0 812.9m500.0m

s_ists6

T

7.500m

-2.500m

0

5.000m

0 812.9m500.0m

v6v_ist

T

20.00m

-10.00m

0

0 812.9m500.0m

m_Dffm_Dffm_Dffm_Dffm_Dff

T

40.00

-20.00

0

25.00

0 812.9m500.0m

u_a"D

T

200.0

-100.0

0

0 812.9m500.0m

J

MasTachoJ := 0.15m

J

MasKupplgLiJ := 0.9m

J

MasKpplgReSpdlLiJ := 1.55m

J

MasSpindelReJ := 1.94m

J

MasTisch

J := 0.57m

STF

StfTachowellec := 20k

k_Vsc := 66.7m

STF

StfMotorwellec := 35k

k_Vsc := 0.24

STF

StfKpplgc := 186k

k_Vsc := 0.39

STF

StfSpindelc := 18k

k_Vsc := 0.223

STF

StfSpdlAxialc := 190

k_Vsc := 0.095

M

DCMP

DcmpMotorR_a := 1.28

L_a := 4.749m

k_e := 971m

I_a0 := 0

J := 2.1m

k_Vsc := 0.25

k_Vsc := 1

State MachineMechanical Elements

Control loop

Page 54: Motor Design Suite V12

Drive System with FEA modelIncludes: High Fidelity Machine FEA Model, Battery, Manufacture IGBTs, Closed-loop Current/Speed Controls, Dynamic Mechanical Load and Digital Switching

GAIN

n

GAIN

ust in

GAIN iq

Y t

ust

d-q-Current Controller

Speed Control

Yt

M LOAD

Phase Transformation / Control Signal Generation by Space Vector Modulation

G(s)

GS2

I

I id

GAIN

id

LIMIT

yq

UL := 10

LL := -10

LIMIT

yd

UL := 10LL := -10

GAIN

P id

KP := 1.96

G(s

)

GS1

I

I n

KI := 29.02kUL := 10

LL := -10

GAIN

P PART n

LIMIT

m ref

KP := 0.1161k

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

CONST

id ref

KI := 240

GAIN

P Iq

KP := 1.96

I

I iq

KI := 240

ICA: EQU

PI3:=pi / 3.

P18:=pi / 180.Tp:=1./fp

wu32:=sqrt(3.) / 2.

kA:=0.1

wu3:=sqrt(3.) gam1:=0.

fp:=10k

tx:=0 costhe:=cos(theta_el)

yalph:=costhe * yd.VAL - sinthe * yq.VAL

i1q:=i1beta * costhe - i1alph * sinthe

i1d:=i1alph * costhe + i1beta * sinthe

ybeta:=sinthe * yd.VAL + costhe * yq.VAL

sinthe:=sin(theta_el)

theta_el:=SYMPOD1.PHIDEG * P18

i1beta:=(SYMPOD1.I1A + 2 * SYMPOD1.I1B) / wu3

theta_m:=theta_el / 3.

i1alph:=SYMPOD1.I1A

SET: k:=k+1 SET: gam1:=gam1

SET: kr:=(k-1)*PI3SET: kl:=k*PI3

kl <= gam1

true

t-tx >= Tp

kr <= gam1 and kl > gam1

yalph > 0 and ybeta >= 0

SET: tx:=t SET: k:=1yalph = 0 and ybeta = 0PRI := 1

(ybeta > 0 and yalph <= 0) or (yalph < 0 and ybeta <= 0) ybeta < 0 and yalph >= 0

SET: gam1:=pi-ASIN(ybeta/y)SET: gam1:=2*pi+ASIN(ybeta/y)true

true

A126SET: z3:=0SET: z6:=1

B345SET: z6:=0SET: z3:=1

A234SET: z1:=0SET: z4:=1

B246SET: z5:=0SET: z2:=1

A135SET: z2:=0SET: z5:=1

B156

SET: z4:=0SET: z1:=1

A123 SET: z3:=1

SET: z4:=0SET: z1:=1

SET: z6:=0SET: z5:=0SET: z2:=1

E456 SET: z2:=0SET: z6:=1

SET: z1:=0

SET: z3:=0SET: z5:=1SET: z4:=1

t-tx >= t02+tr+tl

t-tx>=t02 and k=2

t-tx >= t02+tr+tl

t-tx>=t02 and k=4

t-tx >= t02+tr+tl

t-tx>=t02 and k=6 t-tx>=t02 and k=5

t-tx >= t02+tr+tlt-tx >= t02+tr+tl

t-tx>=t02 and k=3

t-tx >= t02+tr+tl

t-tx>=t02 and k=1

B234

SET: z3:=1SET: z6:=0

A246

SET: z4:=1SET: z1:=0

B135SET: z4:=0SET: z1:=1

A345

SET: z5:=1SET: z2:=0

A156SET: z3:=0SET: z6:=1

B126SET: z2:=1SET: z5:=0

t-tx >= t02+trt-tx >= t02+trt-tx >= t02+tr t-tx >= t02+tr t-tx >= t02+tr t-tx >= t02+tr

E123SET: z6:=0

SET: z4:=0

SET: z3:=1SET: z5:=0

SET: z1:=1SET: z2:=1

A456SET: z4:=1SET: z5:=1SET: z6:=1

SET: z1:=0

SET: z3:=0SET: z2:=0

SET: tl:=kA*y*Tp*sin(gamr)

SET: gamr:=gam1-krSET: tr:= kA*y*Tp*sin(PI3 - gamr)

SET: t02:=(Tp-tr-tl)/2

k=2 or k=4 or k=6 k=1 or k=3 or k=5

SET: k:=0true PRI := 1

t-tx >= Tp and k = 0 SET: tx:=t

SET: gam1:=ASIN(ybeta/y)

true

true

t-tx >= Tp

y:=SQRT(SQU(yalph)+SQU(ybeta))

if (y>10.) y:=10.

ω+

T

ECE - LINKECE - LINK

TA B C

Im β

Rotor

V ROT1

TTheta IN

Im_IN

beta IN

Battery- +

LBATT A1

Page 55: Motor Design Suite V12

EMI Motor Drive AnalysisIncludes: Busbar, Cable, IGBT Package Parasitics for EMI Application

Page 56: Motor Design Suite V12

ePhysics

Page 57: Motor Design Suite V12

What is ePhysics ?• Coupled Thermal and Stress Analysis for electromagnetic devices• Fully integrated with other Ansoft Desktops (Models, Materials, Mesh etc.)• Three Solvers:

Static ThermalTransient ThermalStatic Stress

Magnetic Analysis Thermal Analysis

Page 58: Motor Design Suite V12

Thermal Solution for Motors

Temperature variation vs timeof the rotor yoke & coils

Features:

- Coupled Maxwell – ePhysics solution- Automatic loss mapping- Anisotropic material properties- Adaptive time stepping- Advanced convective – radiative BCs

Convection &RadiationBoundaryConditions

Temperature distribution

Page 59: Motor Design Suite V12

Stress Solution for Motors

Deformation / stress due tocombined electromagnetic

and centrifugal force distributions

Von Mises stress

Features:

- Coupled Maxwell – ePhysics solution- Automatic force distribution mapping- Anisotropic material properties- Usage of load with spatial distribution

Permanent magnets,rotor with centrifugal

force volume density withspatial distribution10,000 rpm

Page 60: Motor Design Suite V12

Embedded PM Motor

Rotor

Magnified deformation due tocentrifugal and EM forces