Top Banner
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Karlsruhe Institute of Technology, Germany Institute for Nuclear and Energy Technologies www.kit.edu Ex-vessel Fuel Coolant Interaction Experiment in the DISCO Facility Renaud Meignen (IRSN) Bruno Raverdy (IRSN) Giancarlo Albrecht (KIT) Alexei Miassoedov (KIT) 17th International QUENCH Workshop Karlsruhe, Germany, November 22-24, 2011
20

Motivation

Feb 23, 2016

Download

Documents

matsu

Motivation. E xperiment in the DISCO facility, similar to those made for Direct Containment Heating (DCH), but with water in the pit , that would give data for the validation of the codes in geometrical situation closer to the reactor ones than all other available data - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Motivation

KIT – Universität des Landes Baden-Württemberg undnationales Forschungszentrum in der Helmholtz-Gemeinschaft

Karlsruhe Institute of Technology, Germany Institute for Nuclear and Energy Technologies

www.kit.edu

Ex-vessel Fuel Coolant Interaction Experimentin the DISCO Facility

Renaud Meignen (IRSN)Bruno Raverdy (IRSN)

Giancarlo Albrecht (KIT)Alexei Miassoedov (KIT)

17th International QUENCH WorkshopKarlsruhe, Germany, November 22-24, 2011

Page 2: Motivation

KIT-IKET2 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Experiment in the DISCO facility, similar to those made for Direct Containment Heating (DCH), but with water in the pit, that would give data for the validation of the codes in geometrical situation closer to the reactor ones than all other available data

No triggered steam explosion, only premixing stage is investigated (but possibility of spontaneous explosion)

Relevance for SARNET2 Ex-vessel Fuel Coolant Interaction (WP 7.1) and debris formation (WP

5.3) are two high-priority issues of SARNET2. Despite the importance of these issues, only a few experimental data are available for the qualification of codes.

Motivation

Page 3: Motivation

KIT-IKET3 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Available experimental data limited

Database for premixing modeling assessment for application of ex-vessel situation is very limited• Water subcooling (~50 K) • High temperature• High density• No way to assess the behavior with existing database• FARO L31 (ISPRA): 100 kg UO2/ZrO2 (gravity driven)• TROI-VISU (KAERI, SERENA): 15 kg UO2/ZrO2 (gravity driven)

Behavior is not as expected from “classical” FCI experiments Jet fragmentation with small fragments compared to TROI or FARO, even

at low melt vessel pressure Due to water inertia and small flow area around vessel

No escape for pressure Vapor film around the jet is unstable

Purpose is to check the code evaluation of fragmentation in more “reactor-like” configuration

Page 4: Motivation

KIT-IKET4 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Reason for experiment: evaluation of ex-vesselFCI in PWR’s at IRSN with MC3D

Page 5: Motivation

KIT-IKET5 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Investigating the fragmentation processes and subsequent phenomena occurring consecutively to the break of the vessel and melt ejection

Information will be useful for several SARNET2 WPs:

• Melt fragmentation processes for high velocity melt jets through a precise analysis of the size of the debris found (WP7.1, WP5.3)

• Pressurization of the pit and containment during the mixing (WP7.1)

• Debris bed characteristics important for coolability:shape, porosity, debris size distribution (WP5.3)

• Melt and water dispersion out of the pit during the process:initial conditions for MCCI (WP6)

• Oxidation of the iron to be compared with cases without water:impact of water on DCH (WP7.1)

• Hydrogen production and potential impact of water for combustion (WP7.2)

Major issues addressed in the experiment

Page 6: Motivation

KIT-IKET6 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Calculations with rough mesh

Strong interaction in most casesdue to Pit pressure > Vessel pressure

Water + melt flow back into the vessel

Not possible to pour all the corium

Weakest interaction for larger annular section

But very fast dispersion of melt

IRSN pre-test analysis for standardDISCO P’4 2D geometry

Page 7: Motivation

KIT-IKET7 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

DISCO Test Facility

Tests with• Scale 1:18 (EPR)• Iron-alumina melt (2400 K)• Steam (10-20 bar)• Air-steam-hydrogen atmosphere• Production and combustion of hydrogen

Measurements of• Pressures (15)• Gas temperatures (22)• Hydrogen production and combustion (gas

samples)• Melt dispersal fractions• Video cameras (4)

Containment

RCS

RPV

Subcompartment

pit

Page 8: Motivation

KIT-IKET8 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Design of the DISCO-FCI experiment

Vmelt = 0.0026 m³

Vwater = 0.125 m³

Vw/Vm = 48

Page 9: Motivation

KIT-IKET9 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Geometry

No specific reference to a particular reactor, so simplifications for code calculations and analysis

• Symmetric reactor pit, no access: 2D calculations• Subcompartment without cover plates• Reactor pit circumferential exits (8) without main cooling

lines• Open flow paths from pit to containment• Height and diameter of the water pool in the cavity both

as high as possible to limit scaling effects: 540 mm• Distance between lower edge of the RPV and water

level: 20 mm• Temperature of the water: 85 °C

Page 10: Motivation

KIT-IKET10 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Geometry and initial conditions

CON: Volume m³ 13,88

CON: Height m 4.5

CON: Diameter m 2.17

Cavity: Volume m² 0.2034

Cavity: Height m 0.984

Cavity: Diameter m 0.540

Flow nozzles (8x cut out area) m² 0.0603

Flow area into con. (8 holes) m² 0.0688

CON: Pressure MPa 0.2

CON: Temperature °C 100

CON: Atmosphere - Air/Steam

RPV: Breach diameter mm 30

RPV: Driving pressure MPa 0.6

RPV: Amount of thermite kg 10.64

Water pool l / °C 125 / 85

Page 11: Motivation

KIT-IKET11 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

- 5 pressure transducers at reactor pit, sampling rate >2 kHz

- 3 transducers below water level,range: 1.7, 3.5, 30 MPa

- 2 transducers above water level,range: 3.5, 3.5 MPa

- Thermocouples in containment, subcompartment, RCS and RPV

- Pre and post test analysis of gas samples in containment

- Collecting of the melt debris and sieve analysis

Facility instrumentation

Page 12: Motivation

KIT-IKET12 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Test procedure

Containment (steam, press, temp)

Loading steam accumulator

Water pool

Gas sample

Ignition (trigger: temp, press)

Steam valve open (1 s)

Melt plug (brass)

Discharge of melt increase temp, press hydrogen burning

Gas sample

Collecting of particles

Page 13: Motivation

KIT-IKET13 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Pressures Steam Accumulator and RPV

-6 -4 -2 0 2 4 6Time [s]

0

0.2

0.4

0.6

0.8

1

1.2P

ress

ure

[MP

a]

P4 RCS topP2 Steam Accu top

Valveopen

Valveclose

Nozzle open

Page 14: Motivation

KIT-IKET14 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Pressures Containment

0 2 4 6 8 10 12 14 16 18 20Time [s]

0.19

0.2

0.21

0.22

0.23

0.24

0.25P

ress

ure

[MP

a]

P7K Level B, Pos. 315°P5 Level A, Pos. 315°P6 Level A, Pos. 45°P7 Level B, Pos. 315°P8 Level C, Pos. 45°P9 Level B, Pos. 135°

Page 15: Motivation

KIT-IKET15 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Pressures Cavity

0 2 4 6 8 10 12 14 16 18 20Time [s]

0.1

0.15

0.2

0.25

0.3

0.35P

ress

ure

[MP

a]

P10 Cavity topP11 Cavity topP12 Cavity middleP13 Cavity middle

Page 16: Motivation

KIT-IKET16 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Pressures Cavity (short time line)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Time [s]

0.16

0.2

0.24

0.28

0.32

Pre

ssur

e [M

Pa]

P10 Cavity topP11 Cavity topP12 Cavity middleP13 Cavity middle

Page 17: Motivation

KIT-IKET17 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Temperature Containment

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Time [s]

80

90

100

110

120

130

140

150

160

Tem

pera

ture

[°C

]

Page 18: Motivation

KIT-IKET18 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Analysis of generated particles (distribution)

0.01 0.1 1 10Particle Size

0

100

200

300

50

150

250

350

Mas

s [g

]

Page 19: Motivation

KIT-IKET19 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

Simplified vessel geometry but refined mesho High sensitivity of jet fragmentation when water contacts the jet

• Important work of analysis• Some 2D sloshing effect• 3D to be investigated

o Generally pressure in the pitreaches vessel pressure

• Strong interaction

IRSN preliminary post-test analysis

Page 20: Motivation

KIT-IKET20 R. Meignen, B. Raverdy (IRSN) , G. Albrecht, A. Miassoedov (KIT/IKET), | 17th International QUENCH Workshop, Karlsruhe, 2011

The experiment addresses SARP high priority issues

No experiment is known with pressure driven melt ejection in reactor geometry at accident conditions

Bridges the gap between DCH and ex-vessel FCI issues

Data will be used for code qualification

Analysis in the frame of SARNET2 WP7.1 and WP5.3 through post-test calculations

• MC3D (IRSN, CEA, …)• JEMI (IKE Stuttgart)

Conclusions