Top Banner
MORPHOLOGICAL CODING OF COLOR IMAGES BY VECTOR CONNECTED FILTERS Jes´ us Angulo, Jean Serra Centre de Morphologie Math´ ematique - Ecole des Mines de Paris 35, rue Saint-Honor´ e, 77305 Fontainebleau, France; angulo,serra @cmm.ensmp.fr ABSTRACT This paper deals with the use of the vector levelings for cod- ing color images. This class of morphological connected filters suppresses details but preserves the contours of the remaining objects. If the color images are filtered by inde- pendently leveling each color component, new colors may be introduced. In order to avoid this drawback, a total or- der must be imposed on the color vectors. A comparative study has been drawn for various lexicographical orders in the RGB and the HLS color systems. These filters can be especially useful as a preprocessing step for improving the compression of color images. 1. INTRODUCTION The morphological connected filters have the nice property to suppress details but preserve the contours of the remain- ing objects. Levelings are a subclass of symmetric con- nected operators that have originally been defined and stud- ied for grey tone images [7]. Several extensions to vector spaces have been proposed: pseudo-scalar and autarkical levelings [2], separable levelings [8] and non-separable lev- elings [12]. In this paper, we deal with the implementation of vector levelings in complete totally ordered lattices by using lexicographical orders which are defined on the RGB color space and on an improved HLS system (recently pro- posed [5]). After a comparative study of the performance of different orders, these color filters are applied to the mor- phological coding of color images. 2. MATHEMATICAL MORPHOLOGY IN COLOR COMPLETE TOTALLY ORDERED LATTICES Mathematical morphology is a non-linear image processing approach which is based on the application of lattice theory to spatial structures [10]. In practice, the definition of mor- phological operators needs a totally ordered complete lattice structure ( or for every pair and ; and every finite subset has a supremum and an infimum) [11]: there are no pair of points for which the order is uncertain. The application of mathematical morphology to color images is difficult due to the vectorial nature of the color data. Many research works have been carried out on the application of mathematical morphology to color images [6, 3, 4, 9]. The most commonly adopted approach is based on the use of a lexicographical order which imposes a total order on the vectors. Let and be two arbitrary vectors ( ), an example of lexico- graphical order may be In this case the priority is given to the first component, then to the second, etc. Obviously, it is possible to define other orders for imposing a dominant role to any other of the vec- tor components. As previous works have shown [9], the drawback of these kinds of orders is that most of vector pairs are sorted by the chosen first component. There is a simple way in order to make the lexicographical order more flexible (reducing the excessive dependence of the first component) which involves the linear reduction of the dynamic margin of the first component, applying a division by a constant and rounding off. Therefore, we can propose an modulus lexicographical order The choice of the value for controls the degree of in- fluence of the first component with regard to the others (above all the second one). These orders can be applied to the color spaces. Let and be the color values of the pixel from the color image in the RGB and HLS color spaces respectively. The use of a lexicographical order directly in the RGB space requires that one of the color must be ar- bitrarily elevated to a dominant role. To avoid this, a first approach entails calculating the and the 0-7803-7946-2/03/$17.00 ©2003 IEEE. ISSPA 2003
4

Morphological Coding of Color Images by Vector Connected Filters

Feb 05, 2017

Download

Documents

trandiep
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Morphological Coding of Color Images by Vector Connected Filters

MORPHOLOGICAL CODING OF COLOR IMAGES BY VECTORCONNECTED FILTERS

JesusAngulo,JeanSerra

CentredeMorphologieMathematique- EcoledesMinesdeParis35,rueSaint-Honore,77305Fontainebleau,France;

�angulo,serra� @cmm.ensmp.fr

ABSTRACT

Thispaperdealswith theuseof thevectorlevelingsfor cod-ing color images. This classof morphologicalconnectedfilters suppressesdetailsbut preserves the contoursof theremainingobjects.If thecolor imagesarefilteredby inde-pendentlyleveling eachcolor component,new colorsmaybe introduced.In orderto avoid this drawback,a total or-der mustbe imposedon the color vectors. A comparativestudyhasbeendrawn for variouslexicographicalordersinthe RGB andthe HLS color systems.Thesefilters canbeespeciallyusefulasa preprocessingstepfor improving thecompressionof color images.

1. INTRODUCTION

Themorphologicalconnectedfilters have thenicepropertyto suppressdetailsbut preserve thecontoursof theremain-ing objects. Levelings are a subclassof symmetriccon-nectedoperatorsthathave originally beendefinedandstud-ied for grey toneimages[7]. Several extensionsto vectorspaceshave beenproposed:pseudo-scalarand autarkicallevelings[2], separablelevelings[8] andnon-separablelev-elings[12]. In this paper, we dealwith the implementationof vector levelings in completetotally orderedlatticesbyusinglexicographicalorderswhicharedefinedon theRGBcolor spaceandonanimprovedHLS system(recentlypro-posed[5]). After a comparative studyof the performanceof differentorders,thesecolorfiltersareappliedto themor-phologicalcodingof color images.

2. MATHEMATICAL MORPHOLOGY IN COLORCOMPLETE TOTALLY ORDERED LATTICES

Mathematicalmorphologyis anon-linearimageprocessingapproachwhich is basedontheapplicationof latticetheoryto spatialstructures[10]. In practice,thedefinitionof mor-phologicaloperatorsneedsatotally orderedcompletelatticestructure( ����� or ����� for every pair � and � ; andeveryfinite subsethasa supremumandan infimum) [11]: thereareno pair of pointsfor which the orderis uncertain.The

applicationof mathematicalmorphologyto color imagesisdifficult dueto thevectorialnatureof thecolordata.Manyresearchworkshave beencarriedout on theapplicationofmathematicalmorphologyto color images[6, 3, 4, 9]. Themostcommonlyadoptedapproachis basedon the useofa lexicographicalorderwhich imposesa total orderon thevectors.Let ��� �� � ��� � � � � � � � � and ��� � � � � � � � � � � ���betwo arbitraryvectors( ��� ����� � ), anexampleof lexico-graphicalorder maybe

������� �� ! �� "��� $# %�� &'� $( )�*+���,��� �-# %&� � ��� &'� $( )�*+���"'� ��� � �.� �/��� �

In thiscasethepriority is givento thefirst component,thento thesecond,etc. Obviously, it is possibleto defineotherordersfor imposinga dominantroleto any otherof thevec-tor components.As previous works have shown [9], thedrawbackof thesekindsof ordersis thatmostof vectorpairsaresortedby thechosenfirst component.Thereis a simplewayin ordertomakethelexicographicalordermoreflexible(reducingtheexcessive dependenceof thefirst component)which involvesthe linear reductionof the dynamicmarginof thefirst component,applyingadivisionby aconstantandroundingoff. Therefore,we can proposean 0�1 moduluslexicographicalorder

��,2��� !43 �� 5 076,� 3 � 5 076$# %3 �� 5 076" 3 � 5 076$( )�*+���,��� �-# %&� � �3 �� 5 076" 3 � 5 076$( )�*+���"'� ��� � �.� �/��� �

The choiceof the value for 0 controls the degreeof in-fluenceof the first componentwith regard to the others(above all thesecondone). Theseorderscanbeappliedtothe color spaces.Let 8�� 9���:� � ;"� 9�� � � <"� 9�� � � =>� 9�� � and8�� 9��?� � @A� 9�� � � B�� 9�� � � CD� 9�� � be the color valuesof thepixel 9 from the color image 8 in the RGB andHLS colorspacesrespectively.

The use of a lexicographical order directly in theRGB spacerequiresthat one of the color must be ar-bitrarily elevated to a dominant role. To avoid this,a first approach entails calculating the E�F G and the

0-7803-7946-2/03/$17.00 ©2003 IEEE. ISSPA 2003

Page 2: Morphological Coding of Color Images by Vector Connected Filters

H/I J of the three RGB values for every pixel; i.eK4L M N L O�N�P H�Q R L S T,L O�N U S V"L O�N U S W,L O�N N and X L M N L O�N'PH/I J L S T,L O�N U S V"L O�N U S W,L O�N N . Then for every pair of pixelsOand Y wecanbuild a lexicographicalorderwherethefirst

componentis givenbyK

, the secondoneis associatedtoX and,ifK4L O�N7P'K4L Y N and X L O�N�P X L Y N thenthechoice

of the RGB componentsdoesnot have a significantinflu-ence;e.g. the greencomponentcanbe takeninto accountthen the red andfinally the blue (

K'U X U S V"U S T"U S W ). Wenamedthis order

K X[Z�\>]_^ . Preliminarytestsshowedthattheapplicationof morphologicaloperatorsbasedontheK X`ZA\>]_^ latticeyieldsstrangevisualeffects.In ordertoimprove thevisualeffects,we proposean a�Z moduluslex-icographicalorderwherethe first componentis givenby afunctionof ordering b ,

b L O�N�P�c�d e�f S T"L O�NDghe�i S V"L O�N�g�e j S W>L O�N k gL l Z cDN d H�Q R L S T,L O�N U S V"L O�N U S W,L O�N N ZH/I J L S T,L O�N U S V"L O�N U S W,L O�N N k U m_n�c�n�l oIn the function b thereare a linear combinationof RGBcomponents(i.e., a luminancevalue) and the H�Q R Z H/I Jof the components(i.e., a saturationvalue), weightedbyc

. After deeptests,we have found that the valuese�fPm o p U e�iAP.m o q U e j�P.m o l

andc�P.m o r

yield very goodvi-sualeffects.Dueto thefact thatthe luminancegivesmuchimportanceto the greencomponent,the othercomponentsfor orderingcanbe: thered,thenthegreenandfinally, theblue( b U S T,U S V&U S W ). A similar approachhasbeenusedforthe interpolationof color images[6]. The order is calledbDZ�\>]_^,s andin Figure1 areshown twoexamplesof colorlevelingwith thisorder.

The more homogenousHLS 3D-polarcoordinatecolorrepresentationmay be usedto defineotherinterestinglex-icographicalorders. For this space,we adoptedthe lat-tices introducedin [3]. The hue is an angularcompo-nent, thereforein order to be able to definea total orderwe must choicea hue origin t�u (typically associatedtothe dominantcolor), i. e. using only the hue,

O�v Y ifS w�L O�N g t�u,x S w�L Y N g t�u . Having thisconstraint,wecandefinetwo a�Z moduluslexicographicalorders:luminance-based y�z7t�s { w�| (luminance,saturationand centredhue)andsaturation-basedz7y�t�s { w�| (saturation,luminanceandcentredhue). We have implementedalsoa lexicographicalorderwith thehuecomponentin thefirst level however, aspointedout in [3], thehue-basedorderis veryunstable.Theauthorsproposeda solutionwhich is basedon a weightingof the hue by the saturation,i.e.

S }w L O�NP~S w�L O�N Z�t�uifS wAL O�N Z�t�u�� m � or

S }w L O�N�P�p q m ��g.S wAL O�N Zt�u ifS w�L O�N Z�t�u v?m � and the following weighting,S } }w L O�N,P�� � �DL S }w L O�N U � m L l Z S �DL O�N N N U m/n�S }w L O�N>v�� m orS } }w L O�N�P I J � L S }w L O�N U � m L lDg�S ��L O�N N N U � m_n�S }w L O�N&v�l r m orS } }w L O�N�P'� � �7L S }w L O�N U � m L p Z S �DL O�N N N U l r mAn'S }w L O�N&v'� � m

orS } }w L O�N�P I J � L S }w L O�N U � m L p>g'S �7L O�N N N U � � m`n.S }w L O�N/v

p q m. Now it is possibleto define the hue-basedordert� z7y , with thehueweightedvalue

S } }w L O�N asfirst compo-nent(

O�v Y ifS } }w L O�N x S } }w L Y N , thenthesaturationandthen

theluminance).Theapplicationof y�z7t�s { w�| yieldsthebestvisualeffectsandconsequentlyit is the mostindicatedforcoding.Theuseof thesaturationaspriority for orderingcanbe interestingfor featureextraction,segmentation,etc. [5]but the visual effectsareannoying.Theuseof the t� z7yresultsin inconvenientvisual artefacts,mainly due to thefact that the influenceof thechoicefor a dominantcolor isvery important.This last latticemaybeinterestingfor em-phasisinga particularcolor or for removing color regionsbut hardlyfor coding.

(a)

(b) (c)

(d) (e)

Fig. 1. Exampleof color levelingsusingthe lexicographicorder b&Z�\>]_^,s � f u onLennaimage:(a)Referenceimage,M. (b) Marker (ASF of size � ), � f . (c) Leveled image,� L M�U � f N . (d) Marker (ASF of size

l � ), � i . (e) Leveledimage,

� L M�U � i N .

3. ALGORITHMIC FRAMEWORK

Oncetheseordershavebeendefined,themorphologicalop-eratorsaredefinedin thestandardway. Thevectorerosionof a color image

Mat pixel � by thestructuringelement

Page 3: Morphological Coding of Color Images by Vector Connected Filters

of size � is� � �,� � � � ���7��� ��� � �"� ��� � �7��� �   ¡ ��� ¢ � £ ¤ ¢,¥ � � ¦"§ � ¨ ¤and the correspondingdilation © � � is obtained by re-placing the � �   by a ª « ¬ . An opening ­ � � is an ero-sion followed by a dilation, and a closing ® � � is a di-lation followed by an erosion. A leveling takesas argu-mentstwo images,a referencefunction � and a markerfunction ¯ (generally, the marker is a roughly simpli-fied version of the referenceimage). The implementa-tion of the leveling ° � ��¤ ¯ � has been programmedbymeansof aniterativealgorithmwith geodesicdilationsandgeodesicerosionsuntil idempotence[7, 2], i.e. ° � ��¤ ¯ � ±��ª « ¬ � � �   ¡ ��¤ © ± � ¯ � £ ¤ � ± � ¯ � ¨ , until ° � ��¤ ¯ � ±>� ° � ��¤ ¯ � ± ²D³ .In order to have auto-dual levelings the marker func-tion must be auto-dual. We have usedtwo families ofauto-dualmarkers: the alternatesequentialfilters (ASF),´>µ7¶ � � � � �4� ® � � ­ � ��· · · ®7¸ � ­ ¸ � ® � ­ �>� � � andthe vec-tor medianfilters (VMF), wherefor the VMF the outputcorrespondsto the color vector that minimisesthe sumofdistancesin the neighbourhood[1]. The purposeof thisstudyhasbeenthecomparisonof thefiltersobtainedfor thefiveordersabovepresented,thereforewehaveprogrammeda generic“vector preserving”function for every morpho-logical color operator(usingoptimalalgorithmsfor theba-sic erosion/dilation).In thecorrespondingoperator, an in-put variableallowsto definethe ¹�º » and ¹ � � of two colorpixelsaccordingto the lexicographicalorderused.In con-clusion,for eachconsideredorderingweneedonly to buildtwo additional¹�º »�¼7¹ � � functions.

4. EXPERIMENTAL RESULTS

Apart from thevisualeffects(asubjectiveevaluation)of thedifferentlexicographicalordersdiscussedabove, anobjec-tive evaluationof the obtainedlevelings hasbeencarriedout. Five color imageshave selectedand for every im-age,six levelings have beencomputedusing as markers:three

´>µ7¶’s of size � �¾½ , ¿ À and ¿ ½ ( ¦ is an square)

andthree Á> ¶ of size ÃÄ`à , ¿ ¿�Ä�¿ ¿ and ¿ ¿�Ä�¿ ¿ ap-plied two times. Moreover, this seriesof filters hasbeenobtainedfor anexampleof eachof thepresentedfive lexi-cographicalorders(noticethatthe Á> ¶ markers,obtainedfrom theRGB components,arealwaysthesame).For theÅ�Æ moduluslexicographicalorders,the value of Å � ¿ Àhasshown to achieve robust andnice levelings. The ori-gin of the hue hasbeenimposedto Ç�È � À É . Then forevery pair of initial image/ leveledimage,two parametersof quality have beencalculated:the Signal-to-NoiseRatioµ7ÊË

and the Percentageof Reductionin the NumberofFlat Zones

¶_Ì,Ë(connectedcomponentsof theimagewith

constantcolorvalue).In Tables1 and2 areincludedtheav-eragevalueson thesix imagesfor

µ7ÊËand¶_Ì,Ë

. As we

ASF, � �'½ Í ³ Í ¸ Í&ÎÏÍ&ÐÑÍ"Òµ7ÊË(dB) 21,9 22,1 22,4 17,4 17,8¶_Ì,Ë(%) 37,1 37,5 38,0 40,0 39,4

ASF, � � ¿ À Í ³ Í ¸ Í&ÎÏÍ&ÐÑÍ"Òµ7ÊË(dB) 18,3 18,7 19,1 15,5 14,3¶_Ì,Ë(%) 44,3 44,8 45,3 46,4 46,4

ASF, � � ¿ ½ Í ³ Í ¸ Í&ÎÏÍ&ÐÑÍ"Òµ7ÊË(dB) 16,6 16,7 17,2 13,9 14,3¶_Ì,Ë(%) 48,9 49,8 50,1 51,7 49,6

Table 1. Averagevaluesofµ7ÊË

and¶_Ì,Ë

using´>µ7¶

asmarkersfor the levelingsandwhere Í ³ � Â�Ó Æ Ë>Ô ¦ ,Í ¸ �$Õ Æ Ë>Ô ¦,Ö × ³ È , Í&Î4�$Ø µ Ç Ö × ³ È Ù Ú�Û × È Ü , Í&Ð4�µ Ø Ç Ö × ³ È Ù Ú�Û × È Ü and Í"Ò"� ÇÝ µ Ø Ú�Û × È Ü .

VMF, Þ ß Þ Í ³ Í ¸ Í&ÎÑÍ&ÐÏÍ"Òµ7ÊË(dB) 23,8 24,1 24,0 22,3 22,2¶_Ì,Ë(%) 33,6 34,1 31,0 26,9 31,1

VMF, ³ ³ ß ³ ³ Í ³ Í ¸ Í&ÎÑÍ&ÐÏÍ"Òµ7ÊË(dB) 21,9 22,7 22,3 20,0 20,6¶_Ì,Ë(%) 39,9 40,3 37,6 34,2 33,5

VMF, ³ ³ ß ³ ³ à ß ¸ á Í ³ Í ¸ Í&ÎÑÍ&ÐÏÍ"Òµ7ÊË(dB) 20,8 21,4 20,9 18,9 19,4¶_Ì,Ë(%) 44,9 45,3 43,2 38,5 37,8

Table 2. Idem.using Á_Â ¶ asmarkersfor thelevelings.

canobserve,usingthe´>µ7¶

’s thebest¶_Ì,Ë

correspondstothe lattices

µ Ø Ç and ÇÝ µ Ø which arehowever the worstlatticeswith respectto

µ7ÊË. A goodbalanceis givenby

thelattices Õ Æ Ë>Ô ¦ and Ø µ Ç , with resultsa little bit bet-ter for Ø µ Ç . In thecaseof Á>Â ¶ ’s,owing to thefact thatthemediansarecomputedin theRGB space,thevaluesofµ7ÊË

and¶_Ì,Ë

area little betterfor Õ Æ Ë>Ô ¦ althoughthevaluesfor Ø µ Ç areclearlyupperthanfor

µ Ø Ç or Ç Ý µ Ø .5. APPLICATION: IMPROVED COMPRESSION

The most widespreadimage compressionalgorithms asJPEG(or MPEGfor videosequences)arebasedona trans-form coding scheme. It partitionsan image into blocks,computesthediscretecosinetransform(DCT)of eachblockandcodeseachDCT componentaccordingto aquantizationschemeasa function of the magnitudeof the component.Thecompressionis greatestfor constantor slowly varyingblockssincethesecanbedescribedby justa few DCT com-ponents.Thebestcolor levelingsmaybeusefulfor thepre-processingof imagesfor JPEGcompression.The idea isto simplify theoriginal imageasmuchaspossiblewithoutlosing meaningfulcontent. Obviously, the size of the re-movedstructuresis givenby thesizeof themarkerfunctionused.Figure2 depictsanexampleof this approachusinga

Page 4: Morphological Coding of Color Images by Vector Connected Filters

(a) (b)

(c) (d)

Fig. 2. Application to compressionby JPEGon Carmenimage:(a) Initial image(rasterfile 196662bytes),(b) com-pressedinitial imagewith quality â ã ä (6477bytes),(c) lev-eledimage,(d) compressedleveledimagewith quality â ã ä(5742bytes).

levelingon å�æ7ç�è éDê ë with a ì_í�î�ê ê ï�ê ê . In theleveledim-age,smalldetailshave beenremoved (seetheblackpupilsof baby Carmenand the letterson the books)but, in thecompressedinitial imagethesedetailsbecomediffusedandthereforetheir suppressionmay be useful in orderto havea clearimage.Themostinterestingis thesizereductionofð ñ ä whenapplyingthecompressionon the leveledimage.For an imagemoreabundantin details,the sizereductioncanbereallysignificant;for instancethesameleveling andthe samecompressionquality appliedto the standardBa-boonimageyield areductionof

ñ ã ä andfor thelevelingofLennaimagefrom Figure1(e) the reductionis upperthanñ ò ä .

6. CONCLUSION

We discussedtheuseof lexicographicalordersin theRGBandHLS color spacesfor theimplementationof vectorlev-elings. It canbeconcludedthat themostinterestinglatticefor morphologicalsimplificationandcodingof colorimagesis å�æ7ç�è éDê ë (luminance,saturation,centredhue)sincebe-sidesnicevisualeffects,it yieldsa goodperformancewithregardto the æ7óô andthe enlargementof flat zones.Weshowed the performanceof vectoriallevelingsfor improv-ing theJPEGcompressionof color images.

7. REFERENCES

[1] J. Astola,P. Haavisto andY. Nuevo, “VectorMedianFilters,” in Proc.of theIEEE, Vol. 78,No. 4, pp.678–689,1990.

[2] C.GomilaandF. Meyer, “Levelingsin VectorSpaces,”in Proc. of IEEE Conferenceon ImageProcessing,Kobe,Japan,October24-28,1999.

[3] A. Hanbury, “Mathematicalmorphologyin the HLScolour space,” in Proc. 12th BMVC, British Ma-chine Vision Conference, Manchester, 10-13Septem-ber2001,pp.II-451-460.

[4] A. Hanbury andJ. Serra,“Mathematicalmorphologyin the CIELAB space,” ImageAnalysisand Stereol-ogy, 21,201–206,2002.

[5] A. Hanbury and J. Serra, “A 3D-polar coordinatecolour representationsuitable for image analysis,”submittedto ComputerVisionandImageUnderstand-ing, November2002,39p.

[6] M. Iwanowski andJ.Serra,“Morphologicalinterpola-tion andcolor images,” in Proc. of ICIAP’99, Venice,Italy, September27-29,1999.

[7] F. Meyer, “The levelings,” in (H. Heijmansand J.RoerdinkEds.)MathematicalMorphologyandIts Ap-plicationsto ImageProcessing, pp.199–206,Kluwer,1998.

[8] F. Meyer, “Vector levelings and flattenings,” in (J.Goutsias,L. VincentandD.S.Bloomberg Eds.)Math-ematicalMorphologyand Its Applicationsto ImageProcessing, pp.51–60,Kluwer, 2000.

[9] F. Ortiz,F. Torres,J.AnguloandS.Puente,“Compara-tivestudyof vectorialmorphologicaloperationsin dif-ferentcolor spaces,” in Proc. SPIEAlgorithms,Tech-niquesand ActiveVision, Vol. SPIE 4572,pp. 259–268,2001.

[10] J.Serra,“ImageAnalysisandMathematicalMorphol-ogy. Vol I,” and “Image Analysis and MathematicalMorphology.Vol II: TheoreticalAdvances,” AcademicPress,London,1982and1988.

[11] J.Serra,“AnamorphosesandFunctionLattices(Mul-tivaluedMorphology),” in (E. DoughertyEd.),Math-ematical Morphology in Image Processing, MarcelDekker, 483–523,1992.

[12] F. ZanogueraandF. Meyer, “On the implementationof non-separablevector levelings,” in (H. Talbot andR.BeareEds.)MathematicalMorphology,Proc.of IS-MM’02, pp. –, Sydney, Australia,April 2002,CSIROPublishing.