Top Banner
Magnetic monopoles in noncommutative spacetime Tapio Salminen University of Helsinki In collaboration with Miklos L˚ angvik and Anca Tureanu [arXiv:1104.1078], [arXiv:1101.4540]
30

Monopole zurich

Dec 05, 2014

Download

Education

Tapio Salminen

Seminar talk given in Quantum Theory and Gravitation, Zurich, June 2011.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Monopole zurich

Magnetic monopoles innoncommutative spacetime

Tapio SalminenUniversity of Helsinki

In collaboration with Miklos L̊angvik and Anca Tureanu

[arXiv:1104.1078], [arXiv:1101.4540]

Page 2: Monopole zurich

Quantizing spacetimeMotivation

Black hole formation in the process of measurement at smalldistances (∼ λP) ⇒ additional uncertainty relations forcoordinates

Doplicher, Fredenhagen and Roberts (1994)

Open string + D-brane theory with an antisymmetric Bij fieldbackground ⇒ noncommutative coordinates in low-energylimit

Seiberg and Witten (1999)

VA possible approach to Planck scale physics isQFT in NC space-time

Page 3: Monopole zurich

Quantizing spacetimeMotivation

Black hole formation in the process of measurement at smalldistances (∼ λP) ⇒ additional uncertainty relations forcoordinates

Doplicher, Fredenhagen and Roberts (1994)

Open string + D-brane theory with an antisymmetric Bij fieldbackground ⇒ noncommutative coordinates in low-energylimit

Seiberg and Witten (1999)

VA possible approach to Planck scale physics isQFT in NC space-time

Page 4: Monopole zurich

Quantizing spacetimeMotivation

Black hole formation in the process of measurement at smalldistances (∼ λP) ⇒ additional uncertainty relations forcoordinates

Doplicher, Fredenhagen and Roberts (1994)

Open string + D-brane theory with an antisymmetric Bij fieldbackground ⇒ noncommutative coordinates in low-energylimit

Seiberg and Witten (1999)

VA possible approach to Planck scale physics isQFT in NC space-time

Page 5: Monopole zurich

Quantizing spacetimeImplementation

Impose [x̂µ, x̂ν ] = iθµν andchoose the frame where

θµν =

0 0 0 00 0 θ 00 −θ 0 00 0 0 0

This leads to the ?-product of functions

(f ? g) (x) ≡ f (x)ei2

←−∂ µθµν

−→∂ νg(y) |y=x

Infinite amount of derivatives induces nonlocality

Page 6: Monopole zurich

Quantizing spacetimeImplementation

Impose [x̂µ, x̂ν ] = iθµν andchoose the frame where

θµν =

0 0 0 00 0 θ 00 −θ 0 00 0 0 0

This leads to the ?-product of functions

(f ? g) (x) ≡ f (x)ei2

←−∂ µθµν

−→∂ νg(y) |y=x

Infinite amount of derivatives induces nonlocality

Page 7: Monopole zurich

Wu-Yang monopoleCommutative spacetime

Find potentials ANµ and AS

µ such that:

1. Bµ = ∇× AN/Sµ

2. AN/Sµ are gauge

transformable to eachother in the overlap δ

3. AN/Sµ are nonsingular

outside the origin

Page 8: Monopole zurich

Wu-Yang monopoleCommutative spacetime

Solution:

AN/St = AN/S

r = AN/Sθ = 0

ANφ =

g

r sin θ(1− cos θ)

ASφ = − g

r sin θ(1 + cos θ)

that gauge transform

AN/Sµ → UAN/S

µ U−1 = AS/Nµ

U = e2ige~c φ

Page 9: Monopole zurich

Wu-Yang monopoleCommutative spacetime

Solution:

Single-valuedness of

U = e2ige~cφ

implies

2ge

~c= N = integer

Dirac QuantizationCondition (DQC)

Page 10: Monopole zurich

Wu-Yang monopoleNC spacetime

Find potentials ANµ and AS

µ such that:

1. AN/Sµ satisfy NC

Maxwell’s equations

2. AN/Sµ are gauge

transformable to eachother in the overlap δ

3. AN/Sµ are nonsingular

outside the origin

Page 11: Monopole zurich

Wu-Yang monopoleMaxwell’s equations

1. NC Maxwell’s equations

εµνγδDν ? Fγδ = 0

Dµ ? Fµν = Jν

where Fµν = 12εµνγδFγδ is the dual field strength tensor and

Fµν = ∂µAν − ∂νAµ − ie[Aµ,Aν ]?

Dν = ∂ν − ie[Aν , ·]?

Task: Expand to second order in θ

Page 12: Monopole zurich

Wu-Yang monopoleMaxwell’s equations

Task: Expand to second order in θ

∇2(BN2 − BS2 )1 =4θ2xz

(x2 + y2)3r10

h− 375(x2 + y2)3 + 131z2(x2 + y2)2 − 2z4(x2 + y2)− 4z6

i− ∂1ρ

N2 + ∂1ρS2

∇2(BN2 − BS2 )2 =4θ2yz

(x2 + y2)3r10

h− 375(x2 + y2)3 + 131z2(x2 + y2)2 − 2z4(x2 + y2)− 4z6

i− ∂2ρ

N2 + ∂2ρS2

∇2(BN2 − BS2 )3 =4θ2

(x2 + y2)4r10

h120(x2 + y2)5 − 900(x2 + y2)4z2 − 1285(x2 + y2)3z4

− 1289(x2 + y2)2z6 − 652(x2 + y2)z8 − 132z10i− ∂3ρ

N2 + ∂3ρS2

Page 13: Monopole zurich

Wu-Yang monopoleMaxwell’s equations

Task: Expand to second order in θ

Page 14: Monopole zurich

Wu-Yang monopoleGauge transformations

2. NC gauge transformations

AN/Sµ should transform to A

S/Nµ (x) under U?(1)

AN/Sµ (x)→ U(x)?AN/S

µ (x)?U−1(x)−iU(x)?∂µU−1(x) = AS/N

µ (x)

with groups elements U(x) = e iλ?

Task: Expand to second order in θ

Page 15: Monopole zurich

Wu-Yang monopoleGauge transformations

Task: Expand to second order in θ

∇2(BN2 − BS2 )GT1 =

4θ2xz

(x2 + y2)3r10

“− 321(x2 + y2)3 + 205(x2 + y2)2z2 + 26(x2 + y2)z4 + 4z6

∇2(BN2 − BS2 )GT2 =

4θ2yz

(x2 + y2)3r10

“− 321(x2 + y2)3 + 205(x2 + y2)2z2 + 26(x2 + y2)z4 + 4z6

∇2(BN2 − BS2 )GT3 =

4θ2

(x2 + y2)4r10

“144(x2 + y2)5 − 564(x2 + y2)4z2 − 455(x2 + y2)3z4

− 403(x2 + y2)2z6 − 188(x2 + y2)z8 − 36z10”

Page 16: Monopole zurich

Wu-Yang monopoleGauge transformations

Task: Expand to second order in θ

Page 17: Monopole zurich

Wu-Yang monopoleContradiction

Comparing the two sets of equations for AN2i − AS2

i

After some algebra we get...

Page 18: Monopole zurich

Wu-Yang monopoleContradiction

Comparing the two sets of equations for AN2i − AS2

i

0 = (∂x∂z − ∂z∂x )(ρN2 − ρS2 ) =24θ2x

(x2 + y2)5r8

“41(x2 + y2)4 + 426(x2 + y2)3z2 + 704(x2 + y2)2z4

+ 496(x2 + y2)z6 + 128z8”

0 = (∂y∂z − ∂z∂y )(ρN2 − ρS2 ) =24θ2y

(x2 + y2)5r8

“41(x2 + y2)4 + 426(x2 + y2)3z2 + 704(x2 + y2)2z4

+ 496(x2 + y2)z6 + 128z8”

These equations have no solution!

Page 19: Monopole zurich

Wu-Yang monopoleContradiction

Comparing the two sets of equations for AN2i − AS2

i

0 = (∂x∂z − ∂z∂x )(ρN2 − ρS2 ) =24θ2x

(x2 + y2)5r8

“41(x2 + y2)4 + 426(x2 + y2)3z2 + 704(x2 + y2)2z4

+ 496(x2 + y2)z6 + 128z8”

0 = (∂y∂z − ∂z∂y )(ρN2 − ρS2 ) =24θ2y

(x2 + y2)5r8

“41(x2 + y2)4 + 426(x2 + y2)3z2 + 704(x2 + y2)2z4

+ 496(x2 + y2)z6 + 128z8”

These equations have no solution!

Page 20: Monopole zurich

Wu-Yang monopoleConclusion

There does not exist potentials ANµ and AS

µ that wouldsimultaneously satisfy Maxwell’s equations and be gauge

transformable to each other.

⇒ The DQC cannot be satisfied

Page 21: Monopole zurich

Wu-Yang monopoleConclusion

There does not exist potentials ANµ and AS

µ that wouldsimultaneously satisfy Maxwell’s equations and be gauge

transformable to each other.

⇒ The DQC cannot be satisfied

Page 22: Monopole zurich

Wu-Yang monopoleDiscussion

Possible causes for the failure of the DQC:

Rotational invariance, 3D vs 2DAharonov-Bohm effect worksVortex line quantization has problems

CP violation and the Witten effect

Perturbative method used

Page 23: Monopole zurich

Wu-Yang monopoleDiscussion

Possible causes for the failure of the DQC:

Rotational invariance, 3D vs 2DAharonov-Bohm effect worksVortex line quantization has problems

CP violation and the Witten effect

Perturbative method used

Page 24: Monopole zurich

Wu-Yang monopoleDiscussion

Possible causes for the failure of the DQC:

Rotational invariance, 3D vs 2DAharonov-Bohm effect worksVortex line quantization has problems

CP violation and the Witten effect

Perturbative method used

Page 25: Monopole zurich

Wu-Yang monopoleDiscussion

Possible causes for the failure of the DQC:

Rotational invariance, 3D vs 2DAharonov-Bohm effect worksVortex line quantization has problems

CP violation and the Witten effect

Perturbative method used

Page 26: Monopole zurich

BonusCovariant source

Page 27: Monopole zurich

Wu-Yang monopoleCovariant source

NC Maxwell’s equations

Dµ ? Fµν = Jν

The lhs transforms covariantly under gauge transformations

⇒ also the rhs must transform nontrivially

From this one gets the gauge covariance requirement up to

the 2nd order correction (J0 = ρ = ρ0 + ρ1 + ρ2 +O(θ3))

ρ1 → ρ1 + θij∂iλ∂jρ0

ρ2 → ρ2 + θij∂iλ∂jρ1 +θijθkl

2

(∂kλ∂iλ∂j∂lρ0 − ∂jλ∂lρ0∂i∂kλ

)

Page 28: Monopole zurich

Wu-Yang monopoleCovariant source

NC Maxwell’s equations

Dµ ? Fµν = Jν

The lhs transforms covariantly under gauge transformations

⇒ also the rhs must transform nontrivially

From this one gets the gauge covariance requirement up to

the 2nd order correction (J0 = ρ = ρ0 + ρ1 + ρ2 +O(θ3))

ρ1 → ρ1 + θij∂iλ∂jρ0

ρ2 → ρ2 + θij∂iλ∂jρ1 +θijθkl

2

(∂kλ∂iλ∂j∂lρ0 − ∂jλ∂lρ0∂i∂kλ

)

Page 29: Monopole zurich

Wu-Yang monopoleCovariant source

Using this requirement we get two covariant sources

ρ = 4πg

„δ3(r)− θkl∂k

“Alδ

3(r)”

+ θijA1j ∂iδ

3(r)

+θijθkl

»A0

j ∂k

“∂iA

0l δ

3(r) + A0l ∂iδ

3(r)”

+1

2A0

i A0k∂j∂lδ

3(r)

–+O(θ3)

«

ρ′ = 4πg

„δ3(r)− θijA0

j ∂iδ3(r)− θijA1

j ∂iδ3(r) +

1

2θijθklA0

i A0k∂j∂lδ

3(r) +O(θ3)

«

All of the coefficients are uniquely fixed!

Page 30: Monopole zurich

Thank you