Top Banner
MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS Olomouc, August, 2009 1 / 29
98

MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Jun 27, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

MOMENTUM MAPS & CLASSICAL FIELDS

2. Covariant Field Theory

MARK J. GOTAY

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 1 / 29

Page 2: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Overview:

I develop some basic CFT from a covariant viewpoint, including:

Geometry of the jet bundle and the Euler–Lagrange equations(analogous to that of the tangent bundle & the Lagrange equationsin mechanics)

Multisymplectic geometry (analogous to the geometry of thecotangent bundle)

Conservation laws and Noether’s theorem using covariantmomentum maps (generalizing the concept of momentum mapfamiliar from mechanics)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 2 / 29

Page 3: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Overview:

I develop some basic CFT from a covariant viewpoint, including:

Geometry of the jet bundle and the Euler–Lagrange equations(analogous to that of the tangent bundle & the Lagrange equationsin mechanics)

Multisymplectic geometry (analogous to the geometry of thecotangent bundle)

Conservation laws and Noether’s theorem using covariantmomentum maps (generalizing the concept of momentum mapfamiliar from mechanics)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 2 / 29

Page 4: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Overview:

I develop some basic CFT from a covariant viewpoint, including:

Geometry of the jet bundle and the Euler–Lagrange equations(analogous to that of the tangent bundle & the Lagrange equationsin mechanics)

Multisymplectic geometry (analogous to the geometry of thecotangent bundle)

Conservation laws and Noether’s theorem using covariantmomentum maps (generalizing the concept of momentum mapfamiliar from mechanics)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 2 / 29

Page 5: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Two Viewpoints:

Instantaneous or (“3+1”) — dynamics described in terms ofthe infinite-dimensional space of fields at a given instant oftime, whereas

Covariant (or multisymplectic) — dynamics described interms of the finite-dimensional space of fields at a givenevent in spacetime.

Both are useful and have their own advantages.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 3 / 29

Page 6: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Two Viewpoints:

Instantaneous or (“3+1”) — dynamics described in terms ofthe infinite-dimensional space of fields at a given instant oftime, whereas

Covariant (or multisymplectic) — dynamics described interms of the finite-dimensional space of fields at a givenevent in spacetime.

Both are useful and have their own advantages.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 3 / 29

Page 7: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Two Viewpoints:

Instantaneous or (“3+1”) — dynamics described in terms ofthe infinite-dimensional space of fields at a given instant oftime, whereas

Covariant (or multisymplectic) — dynamics described interms of the finite-dimensional space of fields at a givenevent in spacetime.

Both are useful and have their own advantages.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 3 / 29

Page 8: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Configuration Bundle Y

X is oriented (n + 1)-dimensional “spacetime”

πXY : Y → X is the covariant configuration bundle, with fiberYx over x ∈ X

Sections φ : X → Y are the physical fields

Compare Y = R×Q → R in (time-dependent) mechanics

Coordinates (xµ, yA) = (x0, x1, . . . , xn, y1, . . . , yN) on Y .

Conventions

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 4 / 29

Page 9: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Configuration Bundle Y

X is oriented (n + 1)-dimensional “spacetime”

πXY : Y → X is the covariant configuration bundle, with fiberYx over x ∈ X

Sections φ : X → Y are the physical fields

Compare Y = R×Q → R in (time-dependent) mechanics

Coordinates (xµ, yA) = (x0, x1, . . . , xn, y1, . . . , yN) on Y .

Conventions

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 4 / 29

Page 10: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Configuration Bundle Y

X is oriented (n + 1)-dimensional “spacetime”

πXY : Y → X is the covariant configuration bundle, with fiberYx over x ∈ X

Sections φ : X → Y are the physical fields

Compare Y = R×Q → R in (time-dependent) mechanics

Coordinates (xµ, yA) = (x0, x1, . . . , xn, y1, . . . , yN) on Y .

Conventions

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 4 / 29

Page 11: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Configuration Bundle Y

X is oriented (n + 1)-dimensional “spacetime”

πXY : Y → X is the covariant configuration bundle, with fiberYx over x ∈ X

Sections φ : X → Y are the physical fields

Compare Y = R×Q → R in (time-dependent) mechanics

Coordinates (xµ, yA) = (x0, x1, . . . , xn, y1, . . . , yN) on Y .

Conventions

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 4 / 29

Page 12: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Polyakov formulation

— (X ,h) is a 2-dimensional spacetime

— (M,g) is a (d + 1)-dimensional spacetime

— Strings are maps φ : X → M (i.e., sections of X → X ×M)

— Think of φ as being an M-valued scalar field on X

— Also treat the metric h on X as a field

— Y = (X ×M)×X Lor(X )

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 5 / 29

Page 13: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Polyakov formulation

— (X ,h) is a 2-dimensional spacetime

— (M,g) is a (d + 1)-dimensional spacetime

— Strings are maps φ : X → M (i.e., sections of X → X ×M)

— Think of φ as being an M-valued scalar field on X

— Also treat the metric h on X as a field

— Y = (X ×M)×X Lor(X )

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 5 / 29

Page 14: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Polyakov formulation

— (X ,h) is a 2-dimensional spacetime

— (M,g) is a (d + 1)-dimensional spacetime

— Strings are maps φ : X → M (i.e., sections of X → X ×M)

— Think of φ as being an M-valued scalar field on X

— Also treat the metric h on X as a field

— Y = (X ×M)×X Lor(X )

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 5 / 29

Page 15: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Polyakov formulation

— (X ,h) is a 2-dimensional spacetime

— (M,g) is a (d + 1)-dimensional spacetime

— Strings are maps φ : X → M (i.e., sections of X → X ×M)

— Think of φ as being an M-valued scalar field on X

— Also treat the metric h on X as a field

— Y = (X ×M)×X Lor(X )

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 5 / 29

Page 16: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Polyakov formulation

— (X ,h) is a 2-dimensional spacetime

— (M,g) is a (d + 1)-dimensional spacetime

— Strings are maps φ : X → M (i.e., sections of X → X ×M)

— Think of φ as being an M-valued scalar field on X

— Also treat the metric h on X as a field

— Y = (X ×M)×X Lor(X )

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 5 / 29

Page 17: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Polyakov formulation

— (X ,h) is a 2-dimensional spacetime

— (M,g) is a (d + 1)-dimensional spacetime

— Strings are maps φ : X → M (i.e., sections of X → X ×M)

— Think of φ as being an M-valued scalar field on X

— Also treat the metric h on X as a field

— Y = (X ×M)×X Lor(X )

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 5 / 29

Page 18: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Polyakov formulation

— (X ,h) is a 2-dimensional spacetime

— (M,g) is a (d + 1)-dimensional spacetime

— Strings are maps φ : X → M (i.e., sections of X → X ×M)

— Think of φ as being an M-valued scalar field on X

— Also treat the metric h on X as a field

— Y = (X ×M)×X Lor(X )

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 5 / 29

Page 19: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Jet Bundle JY

For first order theories:

JxY = [φ] |φ1 ≡ φ2 at x iff φ1(x) = φ2(x) and Txφ1 = Txφ2

JY → Y is an affine bundle, with fiber over y ∈ Yx being

JyY = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = IdTx X

Underlying vector bundle has fiber

L(TxX ,V yY ) = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = 0

Coordinates on JY are (xµ, yA, vBν)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 6 / 29

Page 20: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Jet Bundle JY

For first order theories:

JxY = [φ] |φ1 ≡ φ2 at x iff φ1(x) = φ2(x) and Txφ1 = Txφ2

JY → Y is an affine bundle, with fiber over y ∈ Yx being

JyY = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = IdTx X

Underlying vector bundle has fiber

L(TxX ,V yY ) = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = 0

Coordinates on JY are (xµ, yA, vBν)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 6 / 29

Page 21: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Jet Bundle JY

For first order theories:

JxY = [φ] |φ1 ≡ φ2 at x iff φ1(x) = φ2(x) and Txφ1 = Txφ2

JY → Y is an affine bundle, with fiber over y ∈ Yx being

JyY = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = IdTx X

Underlying vector bundle has fiber

L(TxX ,V yY ) = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = 0

Coordinates on JY are (xµ, yA, vBν)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 6 / 29

Page 22: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Jet Bundle JY

For first order theories:

JxY = [φ] |φ1 ≡ φ2 at x iff φ1(x) = φ2(x) and Txφ1 = Txφ2

JY → Y is an affine bundle, with fiber over y ∈ Yx being

JyY = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = IdTx X

Underlying vector bundle has fiber

L(TxX ,V yY ) = γ ∈ L(TxX ,TyY ) |TπX ,Y γ = 0

Coordinates on JY are (xµ, yA, vBν)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 6 / 29

Page 23: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The jet prolongation of φ : X → Y is jφ : X → JY given byx 7→ Txφ

In coordinates, jφ is

xµ 7→ (xµ, φA(xµ), ∂νφ(xµ))

A section X → JY is holonomic provided it’s of the form jφ forsome φ : X → Y

Compare mechanics: JY ≈ R× TQ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 7 / 29

Page 24: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The jet prolongation of φ : X → Y is jφ : X → JY given byx 7→ Txφ

In coordinates, jφ is

xµ 7→ (xµ, φA(xµ), ∂νφ(xµ))

A section X → JY is holonomic provided it’s of the form jφ forsome φ : X → Y

Compare mechanics: JY ≈ R× TQ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 7 / 29

Page 25: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The jet prolongation of φ : X → Y is jφ : X → JY given byx 7→ Txφ

In coordinates, jφ is

xµ 7→ (xµ, φA(xµ), ∂νφ(xµ))

A section X → JY is holonomic provided it’s of the form jφ forsome φ : X → Y

Compare mechanics: JY ≈ R× TQ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 7 / 29

Page 26: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The jet prolongation of φ : X → Y is jφ : X → JY given byx 7→ Txφ

In coordinates, jφ is

xµ 7→ (xµ, φA(xµ), ∂νφ(xµ))

A section X → JY is holonomic provided it’s of the form jφ forsome φ : X → Y

Compare mechanics: JY ≈ R× TQ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 7 / 29

Page 27: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Dual Jet Bundle

JY ? is the affine dual of JY

Its fiber over y ∈ Yx is

affine maps JyY → Λn+1x X

Use affine maps as JY is an affine bundle.

Fiber coordinates on JY ? → Y are (p,pAµ), corresponding to the

affine mapvA

µ 7→ (p + pAµvA

µ)dn+1x

wheredn+1x = dx0 ∧ dx1 ∧ · · · ∧ dnx

JY ? is a vector bundle.

In mechanics, JY ? ≈ T ∗R× T ∗Q

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 8 / 29

Page 28: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Dual Jet Bundle

JY ? is the affine dual of JY

Its fiber over y ∈ Yx is

affine maps JyY → Λn+1x X

Use affine maps as JY is an affine bundle.

Fiber coordinates on JY ? → Y are (p,pAµ), corresponding to the

affine mapvA

µ 7→ (p + pAµvA

µ)dn+1x

wheredn+1x = dx0 ∧ dx1 ∧ · · · ∧ dnx

JY ? is a vector bundle.

In mechanics, JY ? ≈ T ∗R× T ∗Q

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 8 / 29

Page 29: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Dual Jet Bundle

JY ? is the affine dual of JY

Its fiber over y ∈ Yx is

affine maps JyY → Λn+1x X

Use affine maps as JY is an affine bundle.

Fiber coordinates on JY ? → Y are (p,pAµ), corresponding to the

affine mapvA

µ 7→ (p + pAµvA

µ)dn+1x

wheredn+1x = dx0 ∧ dx1 ∧ · · · ∧ dnx

JY ? is a vector bundle.

In mechanics, JY ? ≈ T ∗R× T ∗Q

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 8 / 29

Page 30: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Dual Jet Bundle

JY ? is the affine dual of JY

Its fiber over y ∈ Yx is

affine maps JyY → Λn+1x X

Use affine maps as JY is an affine bundle.

Fiber coordinates on JY ? → Y are (p,pAµ), corresponding to the

affine mapvA

µ 7→ (p + pAµvA

µ)dn+1x

wheredn+1x = dx0 ∧ dx1 ∧ · · · ∧ dnx

JY ? is a vector bundle.

In mechanics, JY ? ≈ T ∗R× T ∗Q

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 8 / 29

Page 31: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Alternate description:

Proposition: JY ? ≈ Z , where

Zy = z ∈ Λn+1y Y | iv iwz = 0 for all v ,w ∈ VyY.

z ∈ Z takes the form

z = pdn+1x + pAµdyA ∧ dnxµ

where dnxµ = ∂µ dn+1x .

Intrinsically, the isomorphism ϑ : Z → JY ? is

〈ϑ(z), γ〉 = γ∗z ∈ Λn+1x X

where z ∈ Zy , γ ∈ JyY and x = πXY (y).

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 9 / 29

Page 32: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Alternate description:

Proposition: JY ? ≈ Z , where

Zy = z ∈ Λn+1y Y | iv iwz = 0 for all v ,w ∈ VyY.

z ∈ Z takes the form

z = pdn+1x + pAµdyA ∧ dnxµ

where dnxµ = ∂µ dn+1x .

Intrinsically, the isomorphism ϑ : Z → JY ? is

〈ϑ(z), γ〉 = γ∗z ∈ Λn+1x X

where z ∈ Zy , γ ∈ JyY and x = πXY (y).

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 9 / 29

Page 33: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Alternate description:

Proposition: JY ? ≈ Z , where

Zy = z ∈ Λn+1y Y | iv iwz = 0 for all v ,w ∈ VyY.

z ∈ Z takes the form

z = pdn+1x + pAµdyA ∧ dnxµ

where dnxµ = ∂µ dn+1x .

Intrinsically, the isomorphism ϑ : Z → JY ? is

〈ϑ(z), γ〉 = γ∗z ∈ Λn+1x X

where z ∈ Zy , γ ∈ JyY and x = πXY (y).

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 9 / 29

Page 34: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Canonical forms:

Since Z is a bundle of (n + 1)-forms, it carries a tautological(n + 1)-form Θ defined by

Θ(z) = π∗YZ z

.

In coordinates,

Θ = pAµdyA ∧ dnxµ + pdn+1x

Θ is the multi-Liouville form, Ω = −dΘ is the multisymplectic form.(Z ,Ω) is the covariant or multi- phase space.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 10 / 29

Page 35: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Canonical forms:

Since Z is a bundle of (n + 1)-forms, it carries a tautological(n + 1)-form Θ defined by

Θ(z) = π∗YZ z

.In coordinates,

Θ = pAµdyA ∧ dnxµ + pdn+1x

Θ is the multi-Liouville form, Ω = −dΘ is the multisymplectic form.(Z ,Ω) is the covariant or multi- phase space.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 10 / 29

Page 36: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Canonical forms:

Since Z is a bundle of (n + 1)-forms, it carries a tautological(n + 1)-form Θ defined by

Θ(z) = π∗YZ z

.In coordinates,

Θ = pAµdyA ∧ dnxµ + pdn+1x

Θ is the multi-Liouville form, Ω = −dΘ is the multisymplectic form.(Z ,Ω) is the covariant or multi- phase space.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 10 / 29

Page 37: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Remarks:

The affine terms pdn+1x in Z and Θ are crucial; they areresponsible for

I the existence of canonical forms

I incorporating the superhamiltoian into the multimomentum map

−p is the covariant Hamiltonian; the pAµ are multimomenta

General multisymplectic geometry?

Poisson brackets?

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 11 / 29

Page 38: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Remarks:

The affine terms pdn+1x in Z and Θ are crucial; they areresponsible for

I the existence of canonical forms

I incorporating the superhamiltoian into the multimomentum map

−p is the covariant Hamiltonian; the pAµ are multimomenta

General multisymplectic geometry?

Poisson brackets?

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 11 / 29

Page 39: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Remarks:

The affine terms pdn+1x in Z and Θ are crucial; they areresponsible for

I the existence of canonical forms

I incorporating the superhamiltoian into the multimomentum map

−p is the covariant Hamiltonian; the pAµ are multimomenta

General multisymplectic geometry?

Poisson brackets?

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 11 / 29

Page 40: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Remarks:

The affine terms pdn+1x in Z and Θ are crucial; they areresponsible for

I the existence of canonical forms

I incorporating the superhamiltoian into the multimomentum map

−p is the covariant Hamiltonian; the pAµ are multimomenta

General multisymplectic geometry?

Poisson brackets?

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 11 / 29

Page 41: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Remarks:

The affine terms pdn+1x in Z and Θ are crucial; they areresponsible for

I the existence of canonical forms

I incorporating the superhamiltoian into the multimomentum map

−p is the covariant Hamiltonian; the pAµ are multimomenta

General multisymplectic geometry?

Poisson brackets?

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 11 / 29

Page 42: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Coordinates on JY : (xµ, φA,hσρ, φAµ,hσρµ)

— Coordinates on Z : (xµ, φA,hσρ,p,pAµ, ρσρµ)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 12 / 29

Page 43: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

— Coordinates on JY : (xµ, φA,hσρ, φAµ,hσρµ)

— Coordinates on Z : (xµ, φA,hσρ,p,pAµ, ρσρµ)

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 12 / 29

Page 44: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Lagrangian Dynamics

The Lagrangian density:

L : JY → Λn+1X

In coordinates L = L(xµ, yA, vAµ)dn+1x .

No regularity assumption on L; it would fail in almost all examples

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 13 / 29

Page 45: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Lagrangian Dynamics

The Lagrangian density:

L : JY → Λn+1X

In coordinates L = L(xµ, yA, vAµ)dn+1x .

No regularity assumption on L; it would fail in almost all examples

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 13 / 29

Page 46: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Lagrangian Dynamics

The Lagrangian density:

L : JY → Λn+1X

In coordinates L = L(xµ, yA, vAµ)dn+1x .

No regularity assumption on L; it would fail in almost all examples

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 13 / 29

Page 47: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Legendre transformation:

FL : JY → JY ? defined by

〈FL(γ), γ′〉 = L(γ) +ddεL(γ + ε(γ′ − γ)) | ε=0.

In coordinates

pAµ =

∂L∂vA

µand p = L− ∂L

∂vAµ

vAµ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 14 / 29

Page 48: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Legendre transformation:

FL : JY → JY ? defined by

〈FL(γ), γ′〉 = L(γ) +ddεL(γ + ε(γ′ − γ)) | ε=0.

In coordinates

pAµ =

∂L∂vA

µand p = L− ∂L

∂vAµ

vAµ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 14 / 29

Page 49: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Cartan form:

ΘL = (FL)∗Θ

In coordinates

ΘL =∂L∂vA

µdyA ∧ dnxµ +

(L− ∂L

∂vAµ

vAµ

)dn+1x .

Cool fact: L(jφ) = ( jφ)∗ΘL

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 15 / 29

Page 50: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Cartan form:

ΘL = (FL)∗Θ

In coordinates

ΘL =∂L∂vA

µdyA ∧ dnxµ +

(L− ∂L

∂vAµ

vAµ

)dn+1x .

Cool fact: L(jφ) = ( jφ)∗ΘL

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 15 / 29

Page 51: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Cartan form:

ΘL = (FL)∗Θ

In coordinates

ΘL =∂L∂vA

µdyA ∧ dnxµ +

(L− ∂L

∂vAµ

vAµ

)dn+1x .

Cool fact: L(jφ) = ( jφ)∗ΘL

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 15 / 29

Page 52: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Euler–Lagrange equations:

The following are equivalent. For a section φ : X → Y ,

φ is a critical point of the action

A(φ) =

∫XL(jφ)

For all vector fields ξ on JY ,

jφ∗(ξ dΘL) = 0

In coordinates

∂L∂yA (jφ)− ∂

∂xµ

(∂L∂vA

µ(jφ)

)= 0.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 16 / 29

Page 53: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Euler–Lagrange equations:

The following are equivalent. For a section φ : X → Y ,

φ is a critical point of the action

A(φ) =

∫XL(jφ)

For all vector fields ξ on JY ,

jφ∗(ξ dΘL) = 0

In coordinates

∂L∂yA (jφ)− ∂

∂xµ

(∂L∂vA

µ(jφ)

)= 0.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 16 / 29

Page 54: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Euler–Lagrange equations:

The following are equivalent. For a section φ : X → Y ,

φ is a critical point of the action

A(φ) =

∫XL(jφ)

For all vector fields ξ on JY ,

jφ∗(ξ dΘL) = 0

In coordinates

∂L∂yA (jφ)− ∂

∂xµ

(∂L∂vA

µ(jφ)

)= 0.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 16 / 29

Page 55: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

The Lagrangian is the (negative of the) energy:

L = −12

√−hhσρgABvA

σvBρd2x

The Legendre transform is

pAµ = −

√−hhµνgABvB

ν

ρσρµ = 0

p =12

√−hhµνgABvA

µvBν

So the Cartan form is

ΘL =√−h(−hµνgABvB

νdφA ∧ d1xµ +12

√−hhµνgABvA

µvBνd2x

).

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 17 / 29

Page 56: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

The Lagrangian is the (negative of the) energy:

L = −12

√−hhσρgABvA

σvBρd2x

The Legendre transform is

pAµ = −

√−hhµνgABvB

ν

ρσρµ = 0

p =12

√−hhµνgABvA

µvBν

So the Cartan form is

ΘL =√−h(−hµνgABvB

νdφA ∧ d1xµ +12

√−hhµνgABvA

µvBνd2x

).

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 17 / 29

Page 57: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String:

The Lagrangian is the (negative of the) energy:

L = −12

√−hhσρgABvA

σvBρd2x

The Legendre transform is

pAµ = −

√−hhµνgABvB

ν

ρσρµ = 0

p =12

√−hhµνgABvA

µvBν

So the Cartan form is

ΘL =√−h(−hµνgABvB

νdφA ∧ d1xµ +12

√−hhµνgABvA

µvBνd2x

).

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 17 / 29

Page 58: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The E–L equations δL/δφA = 0 and δL/δhαβ = 0 are

(hµνgAB(φ)φB,ν);µ = 0 (1)(

12

√−hhµνgAB(φ)φA

,µφB,ν

)hαβ = gCD(φ)φC

,αφD,β (2)

(1) is the harmonic map equation for φ

(2) does two things:

I it says h is conformally related to φ∗g: Λ2hαβ = (φ∗g)αβ ,

I and it determines the conformal factor: Λ2 = 12 hµνgAB(φ)φA

,µφB,ν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 18 / 29

Page 59: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The E–L equations δL/δφA = 0 and δL/δhαβ = 0 are

(hµνgAB(φ)φB,ν);µ = 0 (1)(

12

√−hhµνgAB(φ)φA

,µφB,ν

)hαβ = gCD(φ)φC

,αφD,β (2)

(1) is the harmonic map equation for φ

(2) does two things:

I it says h is conformally related to φ∗g: Λ2hαβ = (φ∗g)αβ ,

I and it determines the conformal factor: Λ2 = 12 hµνgAB(φ)φA

,µφB,ν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 18 / 29

Page 60: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The E–L equations δL/δφA = 0 and δL/δhαβ = 0 are

(hµνgAB(φ)φB,ν);µ = 0 (1)(

12

√−hhµνgAB(φ)φA

,µφB,ν

)hαβ = gCD(φ)φC

,αφD,β (2)

(1) is the harmonic map equation for φ

(2) does two things:

I it says h is conformally related to φ∗g: Λ2hαβ = (φ∗g)αβ ,

I and it determines the conformal factor: Λ2 = 12 hµνgAB(φ)φA

,µφB,ν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 18 / 29

Page 61: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The E–L equations δL/δφA = 0 and δL/δhαβ = 0 are

(hµνgAB(φ)φB,ν);µ = 0 (1)(

12

√−hhµνgAB(φ)φA

,µφB,ν

)hαβ = gCD(φ)φC

,αφD,β (2)

(1) is the harmonic map equation for φ

(2) does two things:

I it says h is conformally related to φ∗g: Λ2hαβ = (φ∗g)αβ ,

I and it determines the conformal factor: Λ2 = 12 hµνgAB(φ)φA

,µφB,ν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 18 / 29

Page 62: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Momentum Maps & Noether’s Theorem

Suppose η is an automorphism of Y , covering a diffeomorphism of X .We may lift η to an automorphism of various bundles over Y .

Jet prolongations: ηJY := jηY : JY → JY defined by

ηJY (γ) = TηY γ TηX−1

Canonical lifts: ηZ : Z → Z defined by

ηZ (z) = (ηY )∗(z)

PropositionCanonical lifts are special covariant canonical transformations:

η∗Z Θ = Θ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 19 / 29

Page 63: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Momentum Maps & Noether’s Theorem

Suppose η is an automorphism of Y , covering a diffeomorphism of X .We may lift η to an automorphism of various bundles over Y .

Jet prolongations: ηJY := jηY : JY → JY defined by

ηJY (γ) = TηY γ TηX−1

Canonical lifts: ηZ : Z → Z defined by

ηZ (z) = (ηY )∗(z)

PropositionCanonical lifts are special covariant canonical transformations:

η∗Z Θ = Θ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 19 / 29

Page 64: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Momentum Maps & Noether’s Theorem

Suppose η is an automorphism of Y , covering a diffeomorphism of X .We may lift η to an automorphism of various bundles over Y .

Jet prolongations: ηJY := jηY : JY → JY defined by

ηJY (γ) = TηY γ TηX−1

Canonical lifts: ηZ : Z → Z defined by

ηZ (z) = (ηY )∗(z)

PropositionCanonical lifts are special covariant canonical transformations:

η∗Z Θ = Θ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 19 / 29

Page 65: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Momentum Maps & Noether’s Theorem

Suppose η is an automorphism of Y , covering a diffeomorphism of X .We may lift η to an automorphism of various bundles over Y .

Jet prolongations: ηJY := jηY : JY → JY defined by

ηJY (γ) = TηY γ TηX−1

Canonical lifts: ηZ : Z → Z defined by

ηZ (z) = (ηY )∗(z)

PropositionCanonical lifts are special covariant canonical transformations:

η∗Z Θ = Θ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 19 / 29

Page 66: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Covariant Momentum Maps & Noether’s Theorem

Suppose η is an automorphism of Y , covering a diffeomorphism of X .We may lift η to an automorphism of various bundles over Y .

Jet prolongations: ηJY := jηY : JY → JY defined by

ηJY (γ) = TηY γ TηX−1

Canonical lifts: ηZ : Z → Z defined by

ηZ (z) = (ηY )∗(z)

PropositionCanonical lifts are special covariant canonical transformations:

η∗Z Θ = Θ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 19 / 29

Page 67: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Multimomentum Maps

Suppose G is a Lie group of automorphisms of Y (not necessarilyfinite-dimensional).

If G acts by covariant canonical transformations (ormultisymplectomorphisms), a covariant momentum map (ormultimomentum map) for this action is a map

J : Z → g∗ ⊗ ΛnZ = L(g,ΛnZ )

such thatdJ(ξ) = ξZ Ω

Here ξZ is the infinitesimal generator on Z corresponding toξ ∈ g = Lie(G).

J intertwines the group action with the multisymplectic structure via theabove equation.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 20 / 29

Page 68: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Multimomentum Maps

Suppose G is a Lie group of automorphisms of Y (not necessarilyfinite-dimensional). If G acts by covariant canonical transformations (ormultisymplectomorphisms), a covariant momentum map (ormultimomentum map) for this action is a map

J : Z → g∗ ⊗ ΛnZ = L(g,ΛnZ )

such thatdJ(ξ) = ξZ Ω

Here ξZ is the infinitesimal generator on Z corresponding toξ ∈ g = Lie(G).

J intertwines the group action with the multisymplectic structure via theabove equation.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 20 / 29

Page 69: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Multimomentum Maps

Suppose G is a Lie group of automorphisms of Y (not necessarilyfinite-dimensional). If G acts by covariant canonical transformations (ormultisymplectomorphisms), a covariant momentum map (ormultimomentum map) for this action is a map

J : Z → g∗ ⊗ ΛnZ = L(g,ΛnZ )

such thatdJ(ξ) = ξZ Ω

Here ξZ is the infinitesimal generator on Z corresponding toξ ∈ g = Lie(G).

J intertwines the group action with the multisymplectic structure via theabove equation.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 20 / 29

Page 70: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Multimomentum Maps

Suppose G is a Lie group of automorphisms of Y (not necessarilyfinite-dimensional). If G acts by covariant canonical transformations (ormultisymplectomorphisms), a covariant momentum map (ormultimomentum map) for this action is a map

J : Z → g∗ ⊗ ΛnZ = L(g,ΛnZ )

such thatdJ(ξ) = ξZ Ω

Here ξZ is the infinitesimal generator on Z corresponding toξ ∈ g = Lie(G).

J intertwines the group action with the multisymplectic structure via theabove equation.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 20 / 29

Page 71: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

PropositionIf G acts by special covariant canonical transformations, then

J(ξ) = ξZ Θ

is a special covariant momentum map.

Indeed, dJ(ξ) = diξZ Θ = (LξZ − iξZ d)Θ = iξZ Ω.

An alternate formula: J(ξ)(z) = π∗YZ (ξY z)

In coordinates: if we write ξY = ξµ ∂∂xµ + ξA ∂

∂yA ,

J(ξ) = (pAµξA + pξµ)dnxµ − pA

νξν dyA ∧ dn−1xµν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 21 / 29

Page 72: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

PropositionIf G acts by special covariant canonical transformations, then

J(ξ) = ξZ Θ

is a special covariant momentum map.

Indeed, dJ(ξ) = diξZ Θ = (LξZ − iξZ d)Θ = iξZ Ω.

An alternate formula: J(ξ)(z) = π∗YZ (ξY z)

In coordinates: if we write ξY = ξµ ∂∂xµ + ξA ∂

∂yA ,

J(ξ) = (pAµξA + pξµ)dnxµ − pA

νξν dyA ∧ dn−1xµν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 21 / 29

Page 73: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

PropositionIf G acts by special covariant canonical transformations, then

J(ξ) = ξZ Θ

is a special covariant momentum map.

Indeed, dJ(ξ) = diξZ Θ = (LξZ − iξZ d)Θ = iξZ Ω.

An alternate formula: J(ξ)(z) = π∗YZ (ξY z)

In coordinates: if we write ξY = ξµ ∂∂xµ + ξA ∂

∂yA ,

J(ξ) = (pAµξA + pξµ)dnxµ − pA

νξν dyA ∧ dn−1xµν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 21 / 29

Page 74: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

PropositionIf G acts by special covariant canonical transformations, then

J(ξ) = ξZ Θ

is a special covariant momentum map.

Indeed, dJ(ξ) = diξZ Θ = (LξZ − iξZ d)Θ = iξZ Ω.

An alternate formula: J(ξ)(z) = π∗YZ (ξY z)

In coordinates: if we write ξY = ξµ ∂∂xµ + ξA ∂

∂yA ,

J(ξ) = (pAµξA + pξµ)dnxµ − pA

νξν dyA ∧ dn−1xµν

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 21 / 29

Page 75: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String

The gauge group is G = Diff(X ) n C∞(X ,R+)

Diff(X ) acts on C∞(X ,R+) by η · Λ = Λ η−1

(η,Λ) ∈ G sends (φ,h) ∈ Yx to

(η,Λ) · (φ,h) =(φ,Λ2(η(x))(η−1)∗h

)in Yη(x)

Diff(X ) — material relabelings

C∞(X ,R+) conformal rescalings

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 22 / 29

Page 76: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String

The gauge group is G = Diff(X ) n C∞(X ,R+)

Diff(X ) acts on C∞(X ,R+) by η · Λ = Λ η−1

(η,Λ) ∈ G sends (φ,h) ∈ Yx to

(η,Λ) · (φ,h) =(φ,Λ2(η(x))(η−1)∗h

)in Yη(x)

Diff(X ) — material relabelings

C∞(X ,R+) conformal rescalings

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 22 / 29

Page 77: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String

The gauge group is G = Diff(X ) n C∞(X ,R+)

Diff(X ) acts on C∞(X ,R+) by η · Λ = Λ η−1

(η,Λ) ∈ G sends (φ,h) ∈ Yx to

(η,Λ) · (φ,h) =(φ,Λ2(η(x))(η−1)∗h

)in Yη(x)

Diff(X ) — material relabelings

C∞(X ,R+) conformal rescalings

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 22 / 29

Page 78: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String

The gauge group is G = Diff(X ) n C∞(X ,R+)

Diff(X ) acts on C∞(X ,R+) by η · Λ = Λ η−1

(η,Λ) ∈ G sends (φ,h) ∈ Yx to

(η,Λ) · (φ,h) =(φ,Λ2(η(x))(η−1)∗h

)in Yη(x)

Diff(X ) — material relabelings

C∞(X ,R+) conformal rescalings

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 22 / 29

Page 79: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String

The gauge group is G = Diff(X ) n C∞(X ,R+)

Diff(X ) acts on C∞(X ,R+) by η · Λ = Λ η−1

(η,Λ) ∈ G sends (φ,h) ∈ Yx to

(η,Λ) · (φ,h) =(φ,Λ2(η(x))(η−1)∗h

)in Yη(x)

Diff(X ) — material relabelings

C∞(X ,R+) conformal rescalings

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 22 / 29

Page 80: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Lie algebra is g ≈ X(X ) n C∞(X )

For (ξ, λ) ∈ g, the infinitesimal generator is

(ξ, λ)Y = 2λhσρ∂

∂hσρ−(hσµξµ,ρ + hρµξµ,σ

) ∂

∂hσρ+ ξµ

∂xµ

Note: there is no ∂∂φA component here, as φ is a scalar field.

The multimomentum map is

J(ξ, λ) =[ρσρµ (2λhσρ − hσνξν ,ρ − hρνξν ,σ) + p ξµ

]d 1xµ

− (pAµξνdφA + ρσρµξνdhσρ)εµν

where d2xµν = εµν .

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 23 / 29

Page 81: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Lie algebra is g ≈ X(X ) n C∞(X )

For (ξ, λ) ∈ g, the infinitesimal generator is

(ξ, λ)Y = 2λhσρ∂

∂hσρ−(hσµξµ,ρ + hρµξµ,σ

) ∂

∂hσρ+ ξµ

∂xµ

Note: there is no ∂∂φA component here, as φ is a scalar field.

The multimomentum map is

J(ξ, λ) =[ρσρµ (2λhσρ − hσνξν ,ρ − hρνξν ,σ) + p ξµ

]d 1xµ

− (pAµξνdφA + ρσρµξνdhσρ)εµν

where d2xµν = εµν .

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 23 / 29

Page 82: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

The Lie algebra is g ≈ X(X ) n C∞(X )

For (ξ, λ) ∈ g, the infinitesimal generator is

(ξ, λ)Y = 2λhσρ∂

∂hσρ−(hσµξµ,ρ + hρµξµ,σ

) ∂

∂hσρ+ ξµ

∂xµ

Note: there is no ∂∂φA component here, as φ is a scalar field.

The multimomentum map is

J(ξ, λ) =[ρσρµ (2λhσρ − hσνξν ,ρ − hρνξν ,σ) + p ξµ

]d 1xµ

− (pAµξνdφA + ρσρµξνdhσρ)εµν

where d2xµν = εµν .

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 23 / 29

Page 83: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Symmetries

Let G act on Y by bundle automorphisms.

L is equivariant (or G-covariant) if

L (ηJ1Y (γ)) = (ηX )∗ L(γ)

for all γ ∈ JY .

This will be a fundamental assumption in all that follows.

Infinitesimally, this is δξL = 0, where

δξL =∂L∂xµ

ξµ+∂L∂yA ξ

A +∂L∂vA

µ

(ξA

,µ − vAνξν,µ + vB

µ∂ξA

∂yB

)+L ξµ,µ

is the variation of L.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 24 / 29

Page 84: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Symmetries

Let G act on Y by bundle automorphisms.

L is equivariant (or G-covariant) if

L (ηJ1Y (γ)) = (ηX )∗ L(γ)

for all γ ∈ JY .

This will be a fundamental assumption in all that follows.

Infinitesimally, this is δξL = 0, where

δξL =∂L∂xµ

ξµ+∂L∂yA ξ

A +∂L∂vA

µ

(ξA

,µ − vAνξν,µ + vB

µ∂ξA

∂yB

)+L ξµ,µ

is the variation of L.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 24 / 29

Page 85: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Symmetries

Let G act on Y by bundle automorphisms.

L is equivariant (or G-covariant) if

L (ηJ1Y (γ)) = (ηX )∗ L(γ)

for all γ ∈ JY .

This will be a fundamental assumption in all that follows.

Infinitesimally, this is δξL = 0, where

δξL =∂L∂xµ

ξµ+∂L∂yA ξ

A +∂L∂vA

µ

(ξA

,µ − vAνξν,µ + vB

µ∂ξA

∂yB

)+L ξµ,µ

is the variation of L.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 24 / 29

Page 86: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Symmetries

Let G act on Y by bundle automorphisms.

L is equivariant (or G-covariant) if

L (ηJ1Y (γ)) = (ηX )∗ L(γ)

for all γ ∈ JY .

This will be a fundamental assumption in all that follows.

Infinitesimally, this is δξL = 0, where

δξL =∂L∂xµ

ξµ+∂L∂yA ξ

A +∂L∂vA

µ

(ξA

,µ − vAνξν,µ + vB

µ∂ξA

∂yB

)+L ξµ,µ

is the variation of L.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 24 / 29

Page 87: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

ThmLet L be G-equivariant. Then:

FL is also equivariant, i.e., ηZ FL = FL ηJY

The Cartan form ΘL is invariant, i.e., η∗JY ΘL = ΘL

The map JL(ξ) := FL∗J(ξ) : JY → Λn(JY ) is a momentum mapfor the prolonged action of G on JY relative to ΩL = −dΘL. Thatis to say,

ξJY ΩL = dJL(ξ).

Moreover,JL(ξ) = ξJ1Y ΘL.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 25 / 29

Page 88: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

ThmLet L be G-equivariant. Then:

FL is also equivariant, i.e., ηZ FL = FL ηJY

The Cartan form ΘL is invariant, i.e., η∗JY ΘL = ΘL

The map JL(ξ) := FL∗J(ξ) : JY → Λn(JY ) is a momentum mapfor the prolonged action of G on JY relative to ΩL = −dΘL. Thatis to say,

ξJY ΩL = dJL(ξ).

Moreover,JL(ξ) = ξJ1Y ΘL.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 25 / 29

Page 89: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

ThmLet L be G-equivariant. Then:

FL is also equivariant, i.e., ηZ FL = FL ηJY

The Cartan form ΘL is invariant, i.e., η∗JY ΘL = ΘL

The map JL(ξ) := FL∗J(ξ) : JY → Λn(JY ) is a momentum mapfor the prolonged action of G on JY relative to ΩL = −dΘL. Thatis to say,

ξJY ΩL = dJL(ξ).

Moreover,JL(ξ) = ξJ1Y ΘL.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 25 / 29

Page 90: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Divergence Form of Noether’s Thm

If L is G-covariant, then for each ξ ∈ g,

d[(jφ)∗JL(ξ)

]= 0

for any section φ of πXY satisfying the Euler–Lagrange equations.

The quantity (jφ)∗JL(ξ) is called the Noether current, and this theoremstates that the current is conserved.

ProofIf φ is a solution of the Euler–Lagrange equations, then

(j φ)∗(W ΩL) = 0

for any vector field W on JY . In particular, set W = ξJY and simplyapply (jφ)∗ to

ξJY ΩL = dJL(ξ).

.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 26 / 29

Page 91: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Divergence Form of Noether’s ThmIf L is G-covariant, then for each ξ ∈ g,

d[(jφ)∗JL(ξ)

]= 0

for any section φ of πXY satisfying the Euler–Lagrange equations.

The quantity (jφ)∗JL(ξ) is called the Noether current, and this theoremstates that the current is conserved.

ProofIf φ is a solution of the Euler–Lagrange equations, then

(j φ)∗(W ΩL) = 0

for any vector field W on JY . In particular, set W = ξJY and simplyapply (jφ)∗ to

ξJY ΩL = dJL(ξ).

.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 26 / 29

Page 92: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Divergence Form of Noether’s ThmIf L is G-covariant, then for each ξ ∈ g,

d[(jφ)∗JL(ξ)

]= 0

for any section φ of πXY satisfying the Euler–Lagrange equations.

The quantity (jφ)∗JL(ξ) is called the Noether current, and this theoremstates that the current is conserved.

ProofIf φ is a solution of the Euler–Lagrange equations, then

(j φ)∗(W ΩL) = 0

for any vector field W on JY . In particular, set W = ξJY and simplyapply (jφ)∗ to

ξJY ΩL = dJL(ξ).

.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 26 / 29

Page 93: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Divergence Form of Noether’s ThmIf L is G-covariant, then for each ξ ∈ g,

d[(jφ)∗JL(ξ)

]= 0

for any section φ of πXY satisfying the Euler–Lagrange equations.

The quantity (jφ)∗JL(ξ) is called the Noether current, and this theoremstates that the current is conserved.

ProofIf φ is a solution of the Euler–Lagrange equations, then

(j φ)∗(W ΩL) = 0

for any vector field W on JY . In particular, set W = ξJY and simplyapply (jφ)∗ to

ξJY ΩL = dJL(ξ).

. MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 26 / 29

Page 94: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Local Expressions

the “Lagrangian multimomentum map” is

JL(ξ) =(∂L∂vA

µ

ξA +

[L− ∂L

∂vAν

vAν

]ξµ

)d nxµ −

∂L∂vA

µ

ξνdyA ∧ d n−1xµν

the Noether current is

(j1φ)∗JL (ξ) =

[− ∂L∂vA

µ(j1φ)(Lξφ)A + L(j1φ)ξµ

]d nxµ

where the “Lie derivative of φ along ξ is

Lξφ = Tφ ξX − ξY φ; i.e., (Lξφ)A = φA,νξ

ν − ξA φ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 27 / 29

Page 95: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Local Expressions

the “Lagrangian multimomentum map” is

JL(ξ) =(∂L∂vA

µ

ξA +

[L− ∂L

∂vAν

vAν

]ξµ

)d nxµ −

∂L∂vA

µ

ξνdyA ∧ d n−1xµν

the Noether current is

(j1φ)∗JL (ξ) =

[− ∂L∂vA

µ(j1φ)(Lξφ)A + L(j1φ)ξµ

]d nxµ

where the “Lie derivative of φ along ξ is

Lξφ = Tφ ξX − ξY φ; i.e., (Lξφ)A = φA,νξ

ν − ξA φ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 27 / 29

Page 96: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Local Expressions

the “Lagrangian multimomentum map” is

JL(ξ) =(∂L∂vA

µ

ξA +

[L− ∂L

∂vAν

vAν

]ξµ

)d nxµ −

∂L∂vA

µ

ξνdyA ∧ d n−1xµν

the Noether current is

(j1φ)∗JL (ξ) =

[− ∂L∂vA

µ(j1φ)(Lξφ)A + L(j1φ)ξµ

]d nxµ

where the “Lie derivative of φ along ξ is

Lξφ = Tφ ξX − ξY φ; i.e., (Lξφ)A = φA,νξ

ν − ξA φ

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 27 / 29

Page 97: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

A computation gives the useful expression for the Noether divergence:

d[(jφ)∗JL(ξ)

]=

δLδφA (Lξφ)A + δξL

(j1φ) d n+1x

from which again Noether’s theorem is immediate.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 28 / 29

Page 98: MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theorygotay/Olomouc_Covariant... · MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field Theory MARK J. GOTAY MARK J. GOTAY (PIMS,

Bosonic String

The Noether current is:

j(φ,h)∗JL(ξ, λ) =

√−h gAB

(hµνφA

,ρφB,νξ

ρ − 12

hσρφA,σφ

B,ρξ

µ

)d1xµ. (3)

Note again that λ does not appear on the RHS.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS 2. Covariant Field TheoryOlomouc, August, 2009 29 / 29