Top Banner
Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solco n.html#solcon Alison Baski: http://www.courses.vcu.edu/PHYS661/pdf/01SolidSt ate041.ppt Carl Hepburn, “Britney Spear’s Guide to Semiconductor Physics”.
163

Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave: Alison Baski: .

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Molecules & Solids

Harris Ch 9

Eisberg & Resnick Ch 13 & 14

RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon

Alison Baski: http://www.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt

Carl Hepburn, “Britney Spear’s Guide to Semiconductor Physics”.

http://britneyspears.ac/lasers.htm

Page 2: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon

Page 3: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Harris Sections

• Bonding in Molecules (9.1-9.2)

• Rotation and Vibration in Molecules (9.3)

• Types of Solids & Crystals (9.4)

• Nearly Free-Electron Model (9.5)

• Conductors, Insulators, Semiconductors (9.6-9.9)

• Superconductivity (9.10)

Page 4: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

A first look - Sharing Electrons

Harris 9.1

Page 5: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Isolated Atoms

Page 6: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Diatomic Molecule

Page 7: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Four Closely Spaced Atoms

valence band

conduction band

Page 8: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

N closely-spaced Atoms

Harris 9.2

the level of interesthas the same nrg ineach separated atom

Page 9: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Solid of N atomsTwo atoms Six atoms

ref: A.Baski, VCU 01SolidState041.pptwww.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt

Page 10: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Solid composed of ~NA Na Atomsas fn(R)

1s22s22p63s1

Page 11: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Sodium Bands vs Separation

Rohlf Fig 14-4 and Slater Phys Rev 45, 794 (1934)

Page 12: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Copper Bands vs Separation

Rohlf Fig 14-6 and Kutter Phys Rev 48, 664 (1935)

Page 13: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Differences down a column in the Periodic Table: IV-A Elements

Sandin

same valenceconfig

Page 14: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

The 4A Elements

Page 15: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Bonding in Molecules

Harris 9.2

Page 16: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Bondinghttp://hyperphysics.phy-astr.gsu.edu/hbase/chemical/chemcon.html#c1

R Nave, Georgia State Univ

Page 17: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Chemical Bondinghttp://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bondcon.html#c1

R Nave, Georgia State Univ

Page 18: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ionic Bonds

RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4

Page 19: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .
Page 20: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ioniz Electron

Affinity

Coul

Attraction

Pauli

Repulsion

Energy

Balance

NaCl 5.14 -3.62 -6.10 0.31 -4.27

NaF 5.14 -3.41 -7.46 0.35 -5.34

KCl 4.34 -3.62 -5.39 0.19 -4.49

HH 13.6 -0.76

Page 21: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ionic Bonds

Page 22: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Bonds

RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4

Page 23: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Bonding SYM ASYMspatial spin

ASYM SYMspatial spin

Page 24: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Harris

Page 25: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Diatomic Level Diagram

Harris Fig 9.8

Page 26: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Bonding

Stot = 1

not really parallel, but spin-symmetric

not really anti, but spin-asym

Stot = 0

E&R

Page 27: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent

Solid of N atomsTwo atoms Six atoms

ref: A.Baski, VCU 01SolidState041.pptwww.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt

Page 28: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Interesting Pictures

Page 29: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Bonding with p-orbitals

Harris 9.9 & 9.10

Page 30: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Bonding with p-orbitals

Harris 9.11

Page 31: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Bonding Dissimilar Atoms-- broken symmetry

H 9.14 & Table 9.1

Page 32: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ionic vs Covalent Bond Properties

• Ionic Characteristics– Crystalline solids

– High melting & boiling point

– Conduct electricity when melted

– Many soluble in water, but not in non-polar liquids

• Covalent Characteristics– Gases, liquids, non-crystalline

solids

– Low melting & boiling point

– Poor conductors in all phases

– Many soluble in non-polar liquids but not water

Page 33: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ionic Bonds

RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4

Page 34: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ionic Bonds

Page 35: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ionic Bonding

RNave, Georgia State Univ at hyperphysics.phy-astr.gsu.edu/hbase/molecule

Page 36: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Bonds

RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4

Page 37: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Bonding SYM ASYMspatial spin

ASYM SYMspatial spin

space-symmetric tend to be closer

Page 38: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Bonding

Stot = 1

not really parallel, but spin-symmetric

not really anti, but spin-asym

Stot = 0

space-symmetric tend to be closer

Page 39: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Molecular ExcitationsRotation, Vibration, Electric

Harris 9.3

Page 40: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Rotational Spectra

)1(22

1

2

1~

222 rr

IIIKErot

R

rotational A.M.moment of inertia

Page 41: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Rotation

Page 42: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Rotation

Page 43: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Rotational Spectra

Page 44: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Vibration

Molecule“Spring Const”

( N/m )

HF 970

HCl 480

HBr 410

Hi 320

CO 1860

NO 1530

Page 45: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Vibration (in an Electronic state)

Page 46: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ocean Optics: Nitrogen N2

~ 0.3 eV

~ 0.4 eV

Page 47: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Electronic + Vibration

Page 48: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Electronic + Vibration + Rotation

2.656 eV2.550 eV

electronic excitation gap

vibrational excitation gaps

Page 49: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Electronic + Vibration + Rotation

2.656 eV

electronic excitation gap

vibrational excitation gaps

Vibrational WellVibrational Well

depth ~ 0.063 eV

Page 50: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Electronic, Vibration, RotationElectronic ~ optical & UV

~ 1 – 3 eV

Vibration ~ IR ~ 10ths of eV

Rotation ~ microwave ~ 1000ths of eV

Harris 9.24

Page 51: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Electronic, Vibration, RotationElectronic ~ optical & UV

~ 1 – 3 eV

Vibration ~ IR ~ 10ths of eV

Rotation ~ microwave ~ 1000ths of eV

Page 52: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Electronic + Vibration + Rotation

2.656 eV2.550 eV

electronic excitation gap

vibrational excitation gaps

Page 53: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

** + Vibration + Rotation

IN A DIATOMIC MOLECULEbecause a photon has one unit of

angular momentum,the rotational quantum number

must change(vib is not angular motion)

r = 0 not allowed

Page 54: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

** + Vibration + Rotation

Page 55: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ocean Optics: Nitrogen N2

~ 0.3 eV

~ 0.4 eV

Page 56: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .
Page 57: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Some Molecular ConstantsMolecule Equilibrium

Distance

Ro (Å)

Dissociation NRG

Do (eV)

Vibrational freq

v a (cm-1)

Moment of Inertia

Bb (cm-1)

H2+ 1.06 2.65 2297 29.8

H2 0.742 4.48 4395 60.8

O2 1.21 5.08 1580 1.45

N2 1.09 9.75 2360 2.01

CO 1.13 9.60 2170 1.93

NO 1.15 5.3 1904 1.70

HCl 1.28 4.43 2990 10.6

NaCl 2.36 4.22 365 0.190

Notes: a) vibrational frequency in table is given as f / c b) moment of inertia in table is given as hbar2/(2I) / hc

Page 58: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Types of Solids

Harris 9.4

Page 59: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

TYPES OF SOLIDS (ER 13.2)

CRYSTALINE BINDING

• molecular

• ionic

• covalent

• metallic

Page 60: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Molecular Solids

• orderly collection of molecules held together by v. d. Waals• gases solidify only at low Temps• easy to deform & compress• poor conductors

most organicsinert gases

O2 N2 H2

Page 61: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Ionic Solids• individ atoms act like closed-shell, spherical, therefore binding not so directional• arrangement so that minimize nrg for size of atoms

• tight packed arrangement poor thermal conductors• no free electrons poor electrical conductors• strong forces hard & high melting points• lattice vibrations absorb in far IR• to excite electrons requires UV, so ~transparent visible

NaClNaIKCl

Page 62: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Covalent Solids

• 3D collection of atoms bound by shared valence electrons

• difficult to deform because bonds are directional• high melting points (b/c diff to deform)• no free electrons poor electrical conductors• most solids adsorb photons in visible opaque

Ge Si

diamond

Page 63: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Metallic Solids

• (weaker version of covalent bonding)• constructed of atoms which have very weakly

bound outer electron• large number of vacancies in orbital (not enough

nrg available to form covalent bonds)• electrons roam around (electron gas )• excellent conductors of heat & electricity• absorb IR, Vis, UV opaque

Fe Ni Co

config dhalf full

Page 64: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .
Page 65: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Free-Electron Model and

Band Formation

Harris 9.5

Page 66: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

‘Free-Electron’ Models

• Free Electron Model • Nearly-Free Electron Model

– Version 1 – SP221– Version 2 – SP324a– Version 3 – SP324b

• .

*********************************************************

Page 67: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Free-Electron Model (ER13-5)

m

k

m

p

22

222

classical description

Page 68: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Problems with Free Electron Model

* * * * * * * * * * * * * * * * * * * * * * * * * * * *

1) Bragg reflection2) .3) .

Page 69: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Other Problems with the Free Electron Model

• graphite is conductor, diamond is insulator• variation in colors of x-A elements• temperature dependance of resistivity• resistivity can depend on orientation of crystal & current I direction• frequency dependance of conductivity• variations in Hall effect parameters• resistance of wires effected by applied B-fields

• .• .• .

Page 70: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Nearly-Free Electron Modelversion 1 – SP221

Page 71: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Nearly-Free Electron Modelversion 1 – SP221

2/2

2/k

a

2/k

2/2

2/k

a

Page 72: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Nearly-Free Electron Modelversion 1 – SP221

2/2

2/k

a

2/k

2/2

2/k

a

Page 73: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Nearly-Free Electron Model version 2 – SP324a

Page 74: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Nearly-Free Electron Model version 2 – SP324a

• Bloch Theorem

• Special Phase Conditions, k = +/- m /a

• the Special Phase Condition k = +/- /a

This treatment assumes that when a reflection occurs, it is 100%.

Page 75: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

(x) ~ u e i(kx-t)

(x) ~ u(x) e i(kx-t)

~~~~~~~~~~

amplitude

In reality, lower energy waves are sensitive to the lattice:

Amplitude varies with location

u(x) = u(x+a) = u(x+2a) = ….

Bloch’sTheorem

Page 76: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

u(x+a) = u(x)

(x+a) e -i(kx+ka-t) (x) e -i(kx-t)

(x) ~ u(x) e i(kx-t)

(x+a) e ika (x)

Something special happens with the phase when

e ika = 1

ka = +/ m m = 0 not a surprise m = 1, 2, 3, …

...,2,aa

k

What it is ?

Page 77: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

ak

Consider a set of waves with +/ k-pairs, e.g.

k = + /a moves k = /a moves

This defines a pair of waves moving right & left

Two trivial ways to superpose these waves are:

+ ~ e ikx + e ikx ~ e ikx e ikx

+ ~ 2 cos kx ~ 2i sin kx

Page 78: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

+ ~ 2 cos kx ~ 2i sin kx

Kittel

+|2 ~ 4 cos2 kx |2 ~ 4 sin2 kx

Page 79: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Free-electron Nearly Free-electron

Kittel

Discontinuities occur because the lattice is impacting the movement of electrons.

Page 80: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Effective Mass m*

A method to force the free electron model to work in the situations where

there are complications

*2

22

m

k

free electron KE functional form

Page 81: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Effective Mass m* -- describing the balance between applied ext-E and lattice site reflections

2

2

2

1

*

1

km

m* a = Fext

q Eext

Page 82: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

No distinction between m & m*, m = m*, “free electron”, lattice structure does not apply additional restrictions on motion.

m = m*

greater curvature, 1/m* > 1/m > 0, m* < m net effect of ext-E and lattice interaction provides additional acceleration of electrons

greater |curvature| but negative,net effect of ext-E and lattice interaction de-accelerates electrons #1

At inflection pt

1)

2)

Page 83: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

*

2222

22 m

k

m

k latticefromonperturbatiapply

Another way to look at the discontinuities

Shift up implies effective mass has decreased, m* < m, allowing electrons to increase their speed and join faster electrons in the band.The enhanced e-lattice interaction speeds up the electron.

Shift down implies effective mass has increased, m* > m, prohibiting electrons from increasing their speed and makingthem become similar to other electrons in the band.The enhanced e-lattice interaction slows down the electron

Page 84: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

From earlier: Even when above barrier, reflection and transmission coefficients can increase and decrease depending upon the energy.

Page 85: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

change in motiondue to reflections is more significant

than change in motiondue to applied field

change in motion

due to applied field enhanced by change in reflection coefficients

Page 86: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Nearly-Free Electron Model version 3

Page 87: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

From earlier:Even when above barrier, reflection and transmission coefficients can increase and decrease depending upon the energy.

Nearly-Free Electron Model version 3

Page 88: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Nearly-Free Electron Model version 3

à la Ashcroft & Mermin, Solid State Physics

This treatment recognizes that the reflections of electron waves off lattice sites can be more complicated.

Page 89: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

A reminder:

Page 90: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Waves from the left behave like:

iKxiKx

leftthefrom ere

iKx

leftthefrom et

m

K

2

22

Page 91: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Waves from the right behave like:

iKxiKx

rightthefrom ere

iKx

rightthefrom et

m

K

2

22

Page 92: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

rightleftsum BA

Bloch’s Theorem defines periodicity of the wavefunctions:

xeax sumika

sum

xeax sumika

sum

unknown weights

Related toLattice spacing

Page 93: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

xeax sumika

sum xeax sumika

sum

Applying the matching conditions at x a/2

A + B

left right

A + B

left right

A + B

left right

A + B

left right

iKaiKa et

et

rtka

2

1

2cos

22

m

K

2

22

And eliminating the unknown constants A & B leaves:

Page 94: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

For convenience (or tradition) set:

221 rt iett ierir

ka

t

Kacos

cos

Page 95: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8

a

valu

e

COS(electron)

COS(lattice)

ka

t

Kacos

cos

Related topossible

Lattice spacings

Related toEnergy

m

K

2

22

allowed solution regions

Page 96: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

ka

t

Kacos

cos

Related topossible

Lattice spacings

Related toEnergy

m

K

2

22

allowed solution regions

Page 97: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

allo

wed

sol

utio

n re

gion

s

Page 98: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

allo

wed

sol

utio

n re

gion

s

Page 99: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Conductors, Insulators, Semiconductors

Harris 9.6-9.9

Page 100: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

The transistor is the result of "reverse engineering" of the electronic remains of the UFO that landed in Roswell in 1947?

http://www.porticus.org/bell/belllabs_transistor.html

http://www.subversiveelement.com/Roswell_Reverse_Engineering_Shul.html

Page 101: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Band Spacingsin

Insulators & Conductors

electrons free to roam

electrons confined to small region

RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon

Page 102: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Conductors & Insulators at T=0

H9.35a

Page 103: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Conductors & Insulators at T>0

H9.35b

Page 104: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Fermi Distribution for a selected F

0

0.5

1

1.5

0 1 2 3 4

Energy

Pro

bab

ilit

y o

f an

en

erg

y o

ccu

rin

g

(no

t n

orm

alized

)

T=0

1000

5000

1

1)(

/)( kTFe

n

Page 105: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

How does one choose/know F ?

If in unfilled band, F is energy of highest energy electrons at T=0.

If in filled band with gap to next band, F is at the middle of gap.

Page 106: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

FermionsT=0

RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon

Page 107: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Fermions T > 0

Page 108: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

How Many Electrons

Get Promoted?

9.37

f

dDN tot

0

)(

2/

)()(gapf

dDNN fermiexcited

Assume D() ~ constant in band

Page 109: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

How Many Electrons Get Promoted?

Page 110: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Semiconductors

• Types

– Intrinsic – by thermal excitation or high nrg photon

– Photoconductive – excitation by VIS-red or IR

– Extrinsic – by doping

• n-type

• p-type

• ~1 eV

~1/40 eV

Page 111: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Intrinsic Semiconductors

Silicon

Germanium

RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon

Page 112: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Electrons & Holes

2

2

2

1

*

1

km

9.409.41

m* ‘q’ direction I=nqvdA

Bot-band electron + opp with

Top-band electron with opp

m* a = Fext = ‘q’Eext

Eext

Page 113: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Doped Semiconductorslattice

p-type dopants n-type dopants

Page 114: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

5A in 4A lattice

3A in 4A lattice

5A doping in a 4A lattice

Page 115: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Bands in n-doped Semiconductor

9.44

Page 116: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Bands in p-doped Semiconductor

9.45

Page 117: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

5A in 4A lattice 3A in 4A lattice

Page 118: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .
Page 119: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Semiconductor Devices: Diode

9.46Wiki: diode

EE

Page 120: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Semiconductor Devices: Diode9.47

Page 121: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Semiconductor Devices: Diode9.48

Page 122: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Semiconductor Devices: Diode9.53

Page 123: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

PN Diode Junction with bias

http://jas.eng.buffalo.edu/education/pn/biasedPN/index.html

C.R.Wie, SUNY-Buffalo

Applet demonstrating charge flow in valence & conduction bands in a diode.

Found by Ryan Pifer ‘09

Page 124: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Semiconductor Devices: Transistor

9.49

Page 125: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .
Page 126: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Superconductivity

Harris 9.10

Page 127: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

R Nave: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/supcon.html#c1

Temperature Dependence of Resistivity

Joe Eck: superconductors.org

Page 128: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Temperature Dependence of Resistivity

A

LR

Page 129: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

• Conductors– Resistivity increases with increasing Temp Temp but same # conduction e-’s

• Semiconductors & Insulators– Resistivity decreases with increasing Temp

Temp but more conduction e-’s

Page 130: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

First observed Kamerlingh Onnes 1911

Page 131: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Superconductors.org Only in nanotubes

Note: The best conductors & magnetic materials tend not to be superconductors (so far)

Page 132: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Superconductor Classifications• Type I

– tend to be pure elements or simple alloys– = 0 at T < Tcrit

– Internal B = 0 (Meissner Effect)– At jinternal > jcrit, no superconductivity– At Bext > Bcrit, no superconductivity– Well explained by BCS theory

• Type II– tend to be ceramic compounds– Can carry higher current densities ~ 1010 A/m2

– Mechanically harder compounds– Higher Bcrit critical fields– Above Bext > Bcrit-1, some superconductivity

Page 133: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Superconductor Classifications

Page 134: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Type I

Bardeen, Cooper, Schrieffer 1957, 1972

“Cooper Pairs”

Symmetry energy ~ 0.01 eVQ: Stot=0 or 1? L? J?

e e

Page 135: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Sn 230 nmAl 1600Pb 83Nb 38

Best conductors best ‘free-electrons’ no e – lattice interaction not superconducting

Popular Bad Visualizations:

Pairs are related by momentum ±p, NOT position.

correlation lengths

Page 136: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

More realistic 1-D billiard ball picture:

Cooper Pairs are ±k sets

Furthermore:

“Pairs should not be thought of as independent particles” -- Ashcroft & Mermin Ch 34

Page 137: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

• Experimental Support of BCS Theory– Isotope Effects

– Measured Band Gaps corresponding to Tcrit predictions

– Energy Gap decreases as Temp Tcrit

– Heat Capacity Behavior

Page 138: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Normal Conductor

Semiconductor or

Superconductor

Page 139: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Another fact about Type I:

-- Interrelationship of Bcrit and Tcrit

Page 140: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Type II

Q: does BCS apply ?

mixed normal/super

Yr Composition Tc

May

2006InSnBa4Tm4Cu6O18+ 150

2004 Hg0.8Tl0.2Ba2Ca2Cu3O8.33 138

1986 (La1.85Ba.15)CuO4 30

YBa2Cu3O7 93

Page 141: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

actual ~ 8 m

Sandin

Page 142: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Type II – mixed phases

Q: does BCS apply ?

fluxon

Page 143: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Y Ba2 Cu3 O7 crystalline

La2-x Bax Cu O2 solid solution

may control the electronic config of the conducting layer

Page 144: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Another fact about Type II:

-- Interrelationship of Bcrit and Tcrit

Page 145: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

ApplicationsOR

Other Features of Superconductors

http://superconductors.org/Uses.htm

Page 146: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Meissner Effect

Page 147: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Magnetic Levitation – Meissner Effect

Q: Why ?

Kittel states this explusion effectis not clearly directly connected to the = 0 effects

Page 148: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Magnetic Levitation – Meissner Effect

MLX01 Test Vehicle

2003 581 km/h 361 mph2005 80,000+ riders2005 tested passing trains at relative 1026 km/h

http://www.rtri.or.jp/rd/maglev/html/english/maglev_frame_E.html

Page 149: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

MagLev in Shanghai

Page 150: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Maglev in Germany (sc? idi)

32 km track550,000 km since 1984Design speed 550 km/h

NOTE(061204): I’m not so sure this track is superconducting. The MagLev planned for the Munich area will be. France is also thinking about a sc maglev.

Page 151: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Maglev Frog

A live frog levitates inside a 32 mm diameter vertical bore of a Bitter solenoid in a magnetic field of about 16 Tesla at the Nijmegen High Field Magnet Laboratory.

http://www.hfml.ru.nl/pics/Movies/frog.mpg

Page 152: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Josephson Junction~ 2 nm

Page 153: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Recall: Aharonov-Bohm Effect-- from last semester

affects the phase of a wavefunction

Source B/)( 2~ reApie

/)( 1~ reApie

/~~ ipxikx ee

A

Page 154: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

SQUIDsuperconducting quantum interference device

leftioe

~ rightioe

~

o

Page 155: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

ioe ~

)(locationfn

BBohmAharonov

loop

qndl

2

qnB

2

2151007.2)2(

2mTelsa

e

Add up change in flux as go around loop

Page 156: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Typical B fields

(Tesla) (# flux quanta)

Page 157: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

MAGSAFE will be able to locate targets without flying close to the surface.Image courtesy Department of Defence.

http://www.csiro.au/science/magsafe.html

Finding 'objects of interest' at sea with MAGSAFE

MAGSAFE is a new system for locating and identifying submarines.

Operators of MAGSAFE should be able to tell the range, depth and bearing of a target, as well as where it’s heading, how fast it’s going and if it’s diving.

Building on our extensive experience using highly sensitive magnetic sensors known as Superconducting QUantum Interference Devices (SQUIDs) for minerals exploration, MAGSAFE harnesses the power of three SQUIDs to measure slight variations in the local magnetic field.

MAGSAFE has higher sensitivity and greater immunity to external noise than conventional Magnetic Anomaly Detector (MAD) systems. This is especially relevant to operation over shallow seawater where the background noise may 100 times greater than the noise floor of a MAD

instrument.

Page 158: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Phillip Schmidt etal. Exploration Geophysics 35, 297 (2004).

http://www.csiro.au/science/magsafe.html

Page 159: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Arian Lalezari

Page 160: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

SQUID2 nm

1014 T SQUID thresholdHeart signals 10 10 TBrain signals 10 13 T

Page 161: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

• Fundamentals of superconductors:– http://www.physnet.uni-hamburg.de/home/vms/reimer/htc/pt3.html

• Basic Introduction to SQUIDs:– http://www.abdn.ac.uk/physics/case/squids.html

• Detection of Submarines

– http://www.csiro.au/science/magsafe.html • Fancy cross-referenced site for Josephson Junctions/Josephson:

– http://en.wikipedia.org/wiki/Josephson_junction– http://en.wikipedia.org/wiki/B._D._Josephson

• SQUID sensitivity and other ramifications of Josephson’s work:– http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid2.html

• Understanding a SQUID magnetometer:– http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html#c1

• Some exciting applications of SQUIDs:– http://www.lanl.gov/quarterly/q_spring03/squid_text.shtml

Page 162: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

• Relative strengths of pertinent magnetic fields– http://www.physics.union.edu/newmanj/2000/SQUIDs.htm

• The 1973 Nobel Prize in physics– http://nobelprize.org/physics/laureates/1973/

• Critical overview of SQUIDs– http://homepages.nildram.co.uk/~phekda/richdawe/squid/popular/

• Research Applications– http://boojum.hut.fi/triennial/neuromagnetic.html

• Technical overview of SQUIDs:– http://www.finoag.com/fitm/squid.html– http://www.cmp.liv.ac.uk/frink/thesis/thesis/node47.html

Page 163: Molecules & Solids Harris Ch 9 Eisberg & Resnick Ch 13 & 14 RNave:  Alison Baski: .

Redraw LHS

Sn 230 nmAl 1600Pb 83Nb 38

Best conductors best ‘free-electrons’ no e – lattice interaction not superconducting