Top Banner
Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November 21 th 2004
47

Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

May 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

Molecular Simulation of Polymers,Insights and Limitations

Michael Brunsteiner

November 21th 2004

Page 2: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

1

Overview

• The problem

• Materials & methodologies

• Accurate results for simple materials

• Adsorption energies of polymers on pigment surfaces

• Meso-scale → coarse graining

• Conclusions/outlook

Page 3: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

2

The problem — Stability of Dispersions

• Pigment surface structure

• Solvent

• Additives

• Zeta potential

• Dispersant/surface affinity

• Dispersant/solvent interaction

• Temperature, etc ...

Many parameters → complex optimisation

accelerate and focus development through systematicoptimisation of one parameter (divide et impera).

Page 4: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

3

The Dispersant

Synthetic (block-) Co-Polymers:

• high performance

• huge variety

• comaratively cheap

we concentrate on hydrophobic residues.

Page 5: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

4

The Pigments I, PR122

Page 6: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

5

The Pigments II, PB15:3

Page 7: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

6

The Pigments III, PY74

Page 8: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

7

Monomers

Hydrophobic residues of block-co-polymers

O O

butyl−acrylat

Nvinyl−pyridin

O O

benzyl−acrylat

O O

methacrylatethyl−hexyl

OO

N

O O

O

PEHA

PBnA

PVPyr

styrene−oxidePStO

styrenePSt

PBA

methyl methacrylatPMMA

DMAEA

Page 9: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

8

To Adsorbe or not to Adsorbe, Criteria

Concentration of adsorbed/solvated dispersant ([A]/[S])

Thermodynamics: [A][S] = K = const (in equilibriu m!)

K ∝ exp(−∆G/RT )

Kinetics: d[S]dt ∝ k[S]n

k ∝ exp(−∆G‡/RT )

Page 10: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

9

Which Method ?

Page 11: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

9

Which Method ?

QSAR → too few exp. data for fitting

Page 12: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

9

Which Method ?

QSAR → too few exp. data for fitting

Docking → no specific interactions

Page 13: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

9

Which Method ?

QSAR → too few exp. data for fitting

Docking → no specific interactions

EM → complex polymers,

multitude of 2-ary, 3-ary structures

multiple minima

Page 14: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

9

Which Method ?

QSAR → too few exp. data for fitting

Docking → no specific interactions

EM → complex polymers,

multitude of 2-ary, 3-ary structures

multiple minima

Hansen → water is too complex

Page 15: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

9

Which Method ?

QSAR → too few exp. data for fitting

Docking → no specific interactions

EM → complex polymers,

multitude of 2-ary, 3-ary structures

multiple minima

Hansen → water is too complex

“low throughput screening” → Molecular dynamics

Page 16: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

10

Molecular Dynamics — Software

Materials Studio Gromacs

setup + –preciseness – +speed 4:47 0:18

analysis – +documentation + +cost substantial zero

Page 17: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

11

Forcefield I

Small clusters — DFT-LDA vs classical FF

O O O O O O

N

BMA BnMA MAD STY

label monomer(s) NM NW comment

BMA-3 butyl-methacrylate 3 0 trimerMAD-3 2-dimethylamino ethylacrylate 3 0 trimerSTY-3 styrene 3 0 trimerBnMA-1W benzyl-methacrylate 1 1 monomerBnMA-5W benzyl-methacrylate 1 5 monomerSTY-3W styrene 1 3 monomerSTY-2 styrene 2 0 two monomersSTY-BnMA styrene + benzyl-methacrylate 1/1 0 two monomers

Page 18: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

12

Forcefield II

align/comp Compass OPLSP align/comp Compass OPLSP

BMA-3 MAD-3

all/all 2.312 0.168 all/all 1.127 0.202

STY-3 BnMA-1W

all/all 0.758 0.415 all/all 1.366 0.185BnMA/BnMA 1.118 0.106

Page 19: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

13

Forcefield III

align/comp Compass OPLSP align/comp Compass OPLSP

BnMA-5W STY-3W

all/all 1.970 0.424 all/all 1.016 0.441BnMA/BnMA 1.410 0.114 STY/STY 0.113 0.064

H2O/H2O 1.499 0.474 STY/H2O 2.412 0.947H2O/H2O 1.386 0.527

STY-2 STY-BnMA

all/all 0.257 0.107 all/all 1.677 0.134STY1/STY2 0.067 0.055 STY/BnMA 0.143 0.051STY2/STY1 0.220 0.072 BnMA/STY 0.595 0.113

Page 20: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

14

∆Gads – Contributions

W: water X: pigment x-tal M: adsorbant

∆UMW + ∆UXM + ∆UXW + ∆UMM + ∆UXX + ∆UWW

+ T∆S

Page 21: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

15

Approximations I

We only consider the hydrophobic part of dispersant.

The hydrophilic part is assumed to give a neglegible

contribution to the binding affinity .

�������������������������������������� ����������

��������������������������������������� ����������

���������� � � � ����� ���������� ��������������������������������

����������������������������

Page 22: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

16

Approximations II

∆U = (∆UXM + ∆UMW + ∆UMM)× 1Aads

We calculate and compare ∆U

assumption:The entropic contribution and ∆UWW are compareable for

similar dispersants on a given pigment surface/solvent.

Page 23: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

17

Approximations III

In a first series of experiments we only look at ∆UXM,

the interactions between dispersant molecule and pigment

surface.

NO SOLVENT — common approximatio

Page 24: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

17

Approximations III

In a first series of experiments we only look at ∆UXM,

the interactions between dispersant molecule and pigment

surface.

NO SOLVENT — common approximatio

For the systems sudied here these interactions are probably

not specific enough !

Page 25: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

18

Free Energy, the Model System

• Simple polymers in water be-

tween graphite-like surface

• calculate ∆A (∆G) as poten-

tial of mean force (PMF)

• required simulation time: ≈100-fold

Page 26: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

19

Free Energy, Molecules

ethylene-oxide anthracene pentadecane

-250

-200

-150

-100

-50

0

50

100

0 0.5 1 1.5 2 2.5

PMF [0.2 kJ/mol]force [kJ/mol/nm]

-250

-200

-150

-100

-50

0

50

100

0 0.5 1 1.5 2 2.5

PMF [0.2 kJ/mol]force [kJ/mol/nm]

-250

-200

-150

-100

-50

0

50

100

0 0.5 1 1.5 2 2.5

PMF [0.2 kJ/mol]force [kJ/mol/nm]

Page 27: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

20

Free Energy, Results

∆U = ∆UXM + ∆UMM

∆Uaqu = ∆UXM + ∆UMM + ∆UMW

∆Aaqu = free energy of adsorption

ant eox ped

∆U/A -82.5 -66.0 -72.4∆Uaqu/A -48.9 -17.5 -49.8

∆Aaqu/A -37.3 -10.5 -45.7

-80

-60

-40

-20

0E

[kJ/

mol

]

ant eo5 ped

dUvac/A∆Uaqu/A∆Aaqu/A

Page 28: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

21

Vacuum Results I, ∆U(N)

Nmon in commonly used dispersants: 10-150

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10

∆Ead

s [k

J/m

ol]

N (monomers)

Eads Styrene / PR-122

-27.5 - 13.8 x N

Page 29: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

22

Vacuum Results IIa, PB15:3 + M10

-1100

-1000

-900

-800

-700

-600

PDMAEAPBnAPEHAPBAPMMAPStyOPSt

-82

-80

-78

-76

-74

-72

-70

-68

-66

(001) (20-1)

Esolv [kJ/mol] Eads [kJ/mol/nm2] morp hology

Page 30: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

23

Vacuum Results IIb, PR122 + M10

-1100

-1000

-900

-800

-700

-600

PDMAEAPBnAPEHAPBAPMMAPStyOPSt

-70

-65

-60

-55

-50

-45

-40

-35

-30

(001) (010)

Esolv [kJ/mol] Eads [kJ/mol/nm2] morp hology

Page 31: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

24

Vacuum Results IIc, PY74 + M10

-1100

-1000

-900

-800

-700

-600

PDMAEAPBnAPEHAPBAPMMAPStyOPSt

-120

-110

-100

-90

-80

-70

-60

(100) (010) (10-1)

Esolv [kJ/mol] Eads [kJ/mol/nm2] morp hology

Page 32: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

25

Vacuum Results – Conclusions

We get only qualitative results, but we can exclude

a number of candidates.

Page 33: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

25

Vacuum Results – Conclusions

We get only qualitative results, but we can exclude

a number of candidates.

O O

butyl−acrylat

Nvinyl−pyridin

O O

benzyl−acrylat

O O

methacrylatethyl−hexyl

OO

N

O O

O

PEHA

PBnA

PVPyr

styrene−oxidePStO

styrenePSt

PBA

methyl methacrylatPMMA

DMAEA

Page 34: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

26

Polymers on PR122

Asorption energies of BnMA, EHMA, STY, BMA and

hexane-diol.

70 hexane-diol PBeMA 3 decamers

Page 35: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

27

Polymers on PR122, Results I

Uii Uij Uiw Uix U14 sum acov NM ∆U/(A/NM) avgBMA

-0.82 -234.12 369.56 -105.16 13.82 43.28 9.59 3 13.53-10.80 -151.45 349.88 -110.53 18.44 95.55 10.35 3 27.69-32.01 -135.22 403.96 -115.95 18.76 139.54 14.03 4 39.78 27.0

BnMA-7.24 -166.58 340.94 -104.27 4.26 67.10 9.83 3 20.49-9.40 -199.65 339.61 -106.07 10.29 34.77 9.60 3 10.8742.89 -308.04 397.94 -75.46 -4.14 53.19 10.46 4 20.34 17.2

STY2.00 -177.04 372.49 -56.12 -0.78 140.55 13.01 5 54.014.76 -156.08 330.72 -65.00 -2.90 111.50 11.86 4 37.60

-0.84 -147.32 356.85 -63.74 -2.47 142.48 8.93 4 63.84 51.0EHMA

-23.56 -211.51 339.62 -84.20 32.82 53.16 10.08 3 15.82-2.62 -198.56 419.04 -129.61 12.39 100.64 12.52 3 24.12 20.0

X2ol9.65 -91.83 94.25 -7.45 -2.27 2.34 14.35 70 11.43

43.04 -60.28 78.05 -15.18 7.18 52.81 12.37 32 136.65

Page 36: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

28

Polymers on PR122, Results II

-10

0

10

20

30

40

50

60

70

80∆U

ads

BMA BnMA EHMA STY X2ol

Page 37: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

29

Coarse Grained Molecular Dynamics

• less detail • longer timescales • larger systems

Page 38: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

30

Does it Work ?

Page 39: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

30

Does it Work ?

Water is a Complex Material

Page 40: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

31

Fitting a CG Potential

diethyl carbitol

• identify “united atoms”

• declare new atom types

• fit interaction parameters

to reproduce properties of

the all atom system

Page 41: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

32

Diethyl Carbitol

r [nm]

RDF CT-CT

coarseall atom

r [nm]

RDF CT-CM

coarseall atom

r [nm]

RDF CM-CM

coarseall atom

Neat Solvent at 1 atm/300 K

ECT/ECM Etot Lx angle bond Rgyr

aa -40.8/-27.5 -5455.0 31.33 105.8 3.79 6.07

cg -41.0/-27.6 -5490.0 31.29 106.9 3.85 6.08

Page 42: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

33

Block vs Random

polymers on hydrophobic surface

2 × 10 4 × 5 5 × 4 5 × 4 10 × 2 20 × 1

∆Uads

-525 -508 -496 -502 -475 -473

∆S will enchance this trend !

Page 43: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

34

Covered Surfaces, 10-10 BCPs

Page 44: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

35

Covered Surfaces, 10 × 2 CPs

Page 45: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

36

Covered Surfaces, 4 × 5 CPs

Page 46: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

37

Hydrophilic Monomer: Charged vs Polar

Charge also enhances steric/entropic repulsion.

Page 47: Molecular Simulation of Polymers, Insights and Limitationsbrunsteiner.net/docs/ap07-o.pdf · Molecular Simulation of Polymers, Insights and Limitations Michael Brunsteiner November

38

Conclusions and Outlook

• We can give a semi-quantitive ranking of different poly-

mers with respect to their binding affinity to pigment

surfaces.

• To confirm our results we need to use meso-scale meth-

ods.

• We develop a coarse grained model for our materials to

assess longer time-scales and system size effects.