Top Banner
1 Molecular electronics: a new challenge for O(N) methods Roi Baer and Daniel Neuhauser (UCLA) Institute of Chemistry and Lise Meitner Center for Quantum Chemistry The Hebrew University of Jerusalem, Israel IPAM, April 2, 2002
35

Molecular electronics: a new challenge for O(N) methods

Jan 04, 2016

Download

Documents

lee-brennan

Molecular electronics: a new challenge for O(N) methods. Roi Baer and Daniel Neuhauser (UCLA) Institute of Chemistry and Lise Meitner Center for Quantum Chemistry The Hebrew University of Jerusalem, Israel. IPAM, April 2, 2002. Collaboration. Derek Walter , PhD. Student (UCLA) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Molecular electronics: a new challenge for O(N) methods

1

Molecular electronics: a new challenge for O(N) methods

Roi Baer and Daniel Neuhauser (UCLA)

Institute of Chemistry and Lise Meitner Center for Quantum ChemistryThe Hebrew University of Jerusalem, Israel

IPAM, April 2, 2002

Page 2: Molecular electronics: a new challenge for O(N) methods

2

Collaboration

Derek Walter, PhD. Student (UCLA) Prof. Eran Rabani, Tel Aviv University Oded Hod, PhD. student (Tel Aviv U) Acknowledgments:

Israel Science Foundation Fritz Haber center for reaction dynamics

Page 3: Molecular electronics: a new challenge for O(N) methods

3

Overview

Molecular electronics is interesting Formalism O(N3) algorithm: non-interacting electrons Possible O(N) algorithm Electron correlation: O(N2) algorithm

Page 4: Molecular electronics: a new challenge for O(N) methods

4

Introduction

Why are coherent molecular wires interesting?

Page 5: Molecular electronics: a new challenge for O(N) methods

5

Conductance of C60

(a)

I

QDV

R1,C1

R2,C2

-1.0 -0.5 0.0 0.5 1.0

-0.8

-0.4

0.0

0.4

I (nA)

Tip Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c)

(b)

(a)

dI/dV (a

.u.)

0.0

0.2

0.4

0.6

0.8

1.0

T = 4.2 K

T = 4.2 KdI/d

V (a.u.)

0.0 0.3 0.6 0.9 1.20.0

0.3

0.6

0.9

dI/dV

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0T = 300 K

dI/dV (a

.u.)

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

-0.8

-0.4

0.0

0.4

I (nA)

Tip Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c)

(b)

(a)

dI/dV (a

.u.)

0.0

0.2

0.4

0.6

0.8

1.0

T = 4.2 K

T = 4.2 K

dI/dV (a

.u.)

0.0 0.3 0.6 0.9 1.20.0

0.3

0.6

0.9

dI/dV

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0T = 300 K

dI/dV (a

.u.)Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

-0.8

-0.4

0.0

0.4

I (nA)

Tip Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c)

(b)

(a)

dI/dV (a

.u.)

0.0

0.2

0.4

0.6

0.8

1.0

T = 4.2 K

T = 4.2 K

dI/dV (a

.u.)

0.0 0.3 0.6 0.9 1.20.0

0.3

0.6

0.9

dI/dV

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0T = 300 K

dI/dV (a

.u.)

Tip Voltage (V)

Voltage [V]

dI/dV [a.u]

1.0

0.5

0.0

-1.0 0.0 1.0

T=4.2 K

STM

tip

Tunnel

Junction 1

Tunnel

Junction 2

(b)

D. Porath and O. Millo, J. Appl. Phys. 81, 2241 (1997).

Page 6: Molecular electronics: a new challenge for O(N) methods

6

Conductance of a nanotube

S. Frank and W. A. de Heer et al, Science 280, 1744 (1998).

Page 7: Molecular electronics: a new challenge for O(N) methods

7

Conductance of C6H4S2

Reed et al,

Science 278,252 (1997)

Chen et al,

Science 286,1550 (1998)

Page 8: Molecular electronics: a new challenge for O(N) methods

8

Coherent electronics

Size: ~ 1013 logic gates/cm2 (108) Response times: 10-15 sec (10-9)

Quantum effects: Interference Uncertainty Entanglement Inclonability

Page 9: Molecular electronics: a new challenge for O(N) methods

9

Interference effects

de-Broglie: electrons are waves Interference Nonlocal particle nature

Electrons are not photons! Fermions: cannot scatter into “any

energetically open state” Correlated: inelastic collisions, Coulomb

blockade… Tunneling: reducing/killing interference

effects, sensitive

Page 10: Molecular electronics: a new challenge for O(N) methods

10

A simple wire

W: Huckel parameters S D M: chain of 20 “gold” atoms, G G MW coupling = b Expect: current should grow with b

Units: eV

30 Carbons long

ML MR

V

bb

Page 11: Molecular electronics: a new challenge for O(N) methods

11

Sometimes more is less

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

b=1b=1.5b=2b=2.5b=3

I (e

2 /h V

olt)

V (Volt)

Inversion

Page 12: Molecular electronics: a new challenge for O(N) methods

12

Current from transmittance

R LI I I

Landauer current formula

R LI n E T E dE

30 Carbons long

ML MR

V

2eV 2eV

1

1 LL E

n Ee

Page 13: Molecular electronics: a new challenge for O(N) methods

13

Just because of the coupling…

0

0.2

0.4

0.6

0.8

1

-9 -8 -7 -6 -5 -4

b=1b=2

T(E

)

E (eV)

Page 14: Molecular electronics: a new challenge for O(N) methods

14

A switch based on interference

Simplest model of interference effects

2 4

6 8

10

Page 15: Molecular electronics: a new challenge for O(N) methods

15

Current-Voltage

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.5 1 1.5 2

0246810

V (Volt)

I (e

2 /h V

olt)

Destructive

Constructive

2 4

6 8

10

Page 16: Molecular electronics: a new challenge for O(N) methods

16

Fermi Wave length

=L

a=CC

Band bottom

Totally bonding

=2a Band top:

Totally non bonding

F=4a Band middle

Half filling

Page 17: Molecular electronics: a new challenge for O(N) methods

17

XOR gate based on interference

V1

V2

Current I

V1V2I

000

110

011

101

Page 18: Molecular electronics: a new challenge for O(N) methods

18

SensitivityDFT electronic structure. Molecule connected to gold wire, acting as a lead

Cu

rre

nt (

nA

)

Bias (Volt)

Page 19: Molecular electronics: a new challenge for O(N) methods

19

Quantum conductance formalism

( )ˆ1 ˆlimTr H N

R RtI Z e e I tb bm- - ×

®¥

é ù= ê úë û

rr

ˆ ˆ ˆ ˆ,l e l e l

iI qN q H Né ù= - = - ê úë û

&h

L R

IR

Wire

hR=1hR=0

( )ˆ ˆiH t iHt

R RI t e I e-

=h h ˆ

Tr H NZ e eb bm- ×é ù= ê úë û

rr

R. Baer and D. Neuhauser, submitted (2002).

Page 20: Molecular electronics: a new challenge for O(N) methods

20

Weak Bias: Linear Response

( ) ( ) ( )ˆ1 ˆˆlimTrlH N

lR e l RtG qZ e I I t

b mm m b¢ - -é ù -=ë û

®¥

é ù= ê úë û

Conductivity is a current-current correlation formula

R. Kubo, J Phys. Soc. Japan 12, 570 (1957).

Page 21: Molecular electronics: a new challenge for O(N) methods

21

Non-interacting Electrons

( ) ( )2 e

R l lRl R

qI F E N E dE

h ¹

= å ò

( )( )

1

1 llF

eb e me

-=

+

NlR(E) = cumulative transmission probability (from l to R)

R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

Page 22: Molecular electronics: a new challenge for O(N) methods

22

Calculating conductance

Non-interacting particle formalism 4 step O(N3) algorithm

Page 23: Molecular electronics: a new challenge for O(N) methods

23

Step #1: Structure under bias

Use SCF model like DFT/HF etc. Optimize structure and e-density

ss

+

+

+

+

+

+

+

-

-

-

-

-

-

-

Right slabLeft slab

Page 24: Molecular electronics: a new challenge for O(N) methods

24

Step #2: Add Absorbing boundaries

effL RH H i

D. Neuhauser and M. Baer, J. Chem. Phys 90, 4351 (1989)

ss

+

+

+

+

+

+

+

-

-

-

-

-

-

-

Left slab Right slab

LG RG

Page 25: Molecular electronics: a new challenge for O(N) methods

25

Step #3: Trace Formula

( ) ( ) ( )†4 L RN E Tr G E G Eé ù= G Gë û

( ) ( ) 1G E E H -= -

T. Seideman and W. H. Miller, J. Chem. Phys. 96, 4412 (1992).

Page 26: Molecular electronics: a new challenge for O(N) methods

26

Step #4: Current formula

L R LRI F E F E N E dE

1

1 llF

e

l leVm m= +

(Landauer formula)

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

DF

0

0+eV/2

0-eV/2

Page 27: Molecular electronics: a new challenge for O(N) methods

27

Efficient O(N3) Implementation

*

16Re L Rn

nm mnnm n m

e BI W W

h ff=

( ) ( )L Rn

n

F E F EB dE

E f-

=-ò

N(E) is spiky Integrate energy analytically

†L LW U U= G

n n nHU Uf=

Page 28: Molecular electronics: a new challenge for O(N) methods

28

O(N) Algorithm

N(E) is averaged over E → A sparse part of G needed

The trace can be computed by a Chebyshev series

All energies computed in single sweep: integration is trivial

( ) ( ) ( )†

4 L RN E Tr G E G E

Tr T T

é ù= G Gë ûé ù= ë û ( )2 L RT G E= G G

R. Baer, Y. Zeiri, and R. Kosloff, Phys. Rev. B 54 (8), R5287 (1996).

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

DF

0

0+eV/2

0-eV/2

Page 29: Molecular electronics: a new challenge for O(N) methods

29

Including electron correlation

Time Dependent Density Functional Theory

Page 30: Molecular electronics: a new challenge for O(N) methods

30

Linear response

, ,t

I t L G t t E t dt

r r

, ,I LG E r r

Uniform, weak, time dependent electric field:

----

++++

2

220

t

E t E e

Page 31: Molecular electronics: a new challenge for O(N) methods

31

Building the model

Small jellium sandwich

Large jellium sandwich

Embed small in large

Frozen Jellium (leads)

Dynamic system (w+contacts)

ImaginaryImaginary

potentialpotential

ImaginaryImaginary

potentialpotential

Page 32: Molecular electronics: a new challenge for O(N) methods

32

The setup for C3

a) Dynamic density

b) Frozen density

c) Total Density

d) Kohn-Sham potential

Page 33: Molecular electronics: a new challenge for O(N) methods

33

Conductance of C3

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1

z2 = -8 a

0

z2 = -4 a

0

z2 = 0 a

0

z2 = 4 a

0

z2 = 8 a

0

G(z

2,z0;

) [g

o]

[au]

Page 34: Molecular electronics: a new challenge for O(N) methods

34

Are correlations important?

Conductance is smaller by a factor 10. Possible reason: the same reason that

causes DFT to underestimate HOMO-LUMO gaps

Page 35: Molecular electronics: a new challenge for O(N) methods

35

Summary

Molecular electronics Theory of conductance Linear scaling calculation of conductance Importance of electrson-electron correlations TDDFT is expensive and at least O(N2)