Top Banner
MOLECULAR DOCKING OF ANAPLASTIC LYMPHOMA KINASE WITH LIGANDS USING AUTODOCK TOOLS J. Janiba Jeslin 1
37

molecular docking

Apr 14, 2017

Download

Science

j janiba jeslin
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: molecular docking

1

MOLECULAR DOCKING OF

ANAPLASTIC LYMPHOMA KINASE

WITH LIGANDS USING AUTODOCK TOOLS

J. Janiba Jeslin

15/PCHA/508

Page 2: molecular docking

2

WHAT IS DOCKING?

Computational method that mimics the binding of a ligand to a

protein

Page 3: molecular docking

3

Docking depends on main two components

• Scoring function

• Genetic algorithm

Page 4: molecular docking

4

SCORING FUNCTIONIt predict the strength of interactions

between two molecules after they have docked

Emprical scoring function Force field scoring function Knowledge based scoring function

Page 5: molecular docking

GENETIC ALGORITHM

• Genetic algorithm is one of the conformational search

• It give scoring function for each pose of ligand

5

Page 6: molecular docking

6

AUTO DOCK

• Autodock is a software used to predict the interaction of ligands with bio macromolecular targets

• AutoDock, using the Lamarckian Genetic Algorithm and force field scoring function

Page 7: molecular docking

7

Force field scoring function

Autodock uses force field to evaluate the conformations during docking .

Page 8: molecular docking

8

Autodock has several steps

Retrieving the protein and ligand from databases

Preparation of coordinate files Preparation of grid parameter file Preparation of docking parameter file Analysis of results

Page 9: molecular docking

9

RETRIEVING PROTEIN AND LIGAND FROM DATABASE

Page 10: molecular docking

10

Retrieve protein from protein data bankopen it in chimera Remove water from protein. save as .pdb

Structure of anaplastic lymphoma kinase

Page 11: molecular docking

11

Appearance of target with water molecule in chimera

Page 12: molecular docking

12

Retrieve ligand from pubchemOpen it in chimera Save as .pdb format

Loratinib Ceritinib

5-chloro-N2-[5-methyl-4-(piperidin-4-yl)-2-(propan-2-yloxy)phenyl]-N4-[2-(propane-2-sulfonyl)phenyl]pyrimidine-2,4-diamine.

7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11)benzoxadiazacyclotetradecine-3-carbonitrile

Page 13: molecular docking

13

Crizotinib Alectinib

3-[(1R)-1-(2, 6-dichloro-3-fluorophenyl) ethoxy]-5-[1-(piperidin-4-yl)-1H-pyrazol-4-yl] pyridin-2-amine

9-ethyl-6,6-dimethyl-8-[4-(morpholin-4-yl)piperidin-1-yl]-11-oxo-5H,6H,11H-benzo[b]carbazole-3-carbonitrile.

Page 14: molecular docking

14

preparation of coordinate files

Page 15: molecular docking

15

Click edit Hydrogen add. Then select polar only ok.

Then again click edit charge add kollmann charge ok

Open grid macromolecule choose target select molecule ok

Now save target.pdb as target.pdbqt

Page 16: molecular docking

16

Appearance of target.pdbqt in autodock

Page 17: molecular docking

Ligand torsion tree detect rootLigand torsion tree choose torsionsLigand output save as ligand.pdbqt

Appearance of ligand in screen

Page 18: molecular docking

18

Preparing grid parameter file

Page 19: molecular docking

19

Grid set map type choose ligand select ligand select ligand

Grid Grid box file close saving current(set the dimensions according to grid box)

Grid output save gpf file

Appearance of grid box

Page 20: molecular docking

20

To run AutoGrid Run Run autogrid

Run autogrid dialog box

Page 21: molecular docking

21

After the completion of autogrid running ,it will create different files namely

List of grid files created by autodock

Page 22: molecular docking

22

Preparation of docking parameter file

Page 23: molecular docking

23

• Docking macromolecule set rigid file name select target open

Docking ligand choose ligand select ligand

Docking search parameter genetic algorithm accept

Docking docking parameters accept

Docking output lamarikan

Page 24: molecular docking

24

To run autodock

Run run auto dock

Page 25: molecular docking

25

ANALYSING THE RESULT OF PROTEIN-LIGAND INTERACTION

Page 26: molecular docking

26

Analyze docking open

docking log file dialog box will be appear

select target.dlg open

Analyse conformations play. Click on show conformation

Page 27: molecular docking

27

Page 28: molecular docking

28

Binding energy is the sum of the intermolecular energy and the torsional free-energy penalty. Docking energy is the sum of the intermolecular energy and the ligand’s internal energy. Inhib_constant is calculated in autodock as follows: Ki=exp ((deltaG*1000.)/ (Rcal*TK)Where deltaG is docking energy, Rcal is 1.98719 and TK is 298.15..

Page 29: molecular docking

29

refRMS is rms difference between current conformation coordinates and current reference structure. clRMS is rms difference between current conformation and the lowest energy conformation in its cluster. Torsional_energy is the number of active torsions . rseed1 and rseed2 are the specific random number used for Current conformation’s docking run.

Page 30: molecular docking

30

conformations Binding energy

Loratinib-1_1 -8.96

Loratinib-1_2 -8.23

Loratinib-1_3 -8.71

Loratinib-1_4 -9.09

Loratinib-1_5 -8.62

Loratinib-1_6 -11.03

Loratinib-1_7 -8.82

Loratinib-1_8 -8.47Loratinib-1_9 -8.05Loratinib-1_10 -8.58

conformations Binding energy

Ceritinib-2_1 -7.41

Ceritinib-2_2 -7.04

Ceritinib-2_3 -8.6

Ceritinib-2_4 -7.28

Ceritinib-2_5 -6.09Ceritinib-2_6 -7.18Ceritinib-2_7 -7.28

Ceritinib-2_8 -8.22Ceritinib-2_9 -7.73Ceritinib-2_10 -8.65

Binding energies for Loratinib and Ceritinib

Page 31: molecular docking

31

conformations Binding energy

Crizotinib-2_1 -6.8

Crizotinib -2_2 -5.94

Crizotinib -2_3 -6.19

Crizotinib -2_4 -6.01

Crizotinib -2_5 -6.84Crizotinib -2_6 -6.95Crizotinib -2_7 -5.6

Crizotinib -2_8 -5.93Crizotinib -2_9 -6.8Crizotinib -2_10 -5.57

conformations Binding energy

Alectinib-2_1 -7.55

Alectinib-2_2 -7.5

Alectinib-2_3 -7.28

Alectinib-2_4 -7.53

Alectinib-2_5 -7.67Alectinib-2_6 -7.72Alectinib-2_7 -7.33

Alectinib-2_8 -7.49Alectinib-2_9 -7.5Alectinib-2_10 -7.54

Binding energies for Crizotinib and Alectinib

Page 32: molecular docking

32

VISUALIZING THE RESULTS

Page 33: molecular docking

33

Analyze Clustering Show

Page 34: molecular docking

34

CONCLUSION

This molecular docking reveals that all ligands(loratinib, centinib, Crizotinib, Alectinib ) binding to anaplastic lymphoma kinase. The most strongest docking will be between the loratinib and anaplastic lymphoma kinase which have binding energy of -11.03. the least docking will be between the Crizotinib and anaplastic lymphoma kinase which have binding energy of -7.67.

Page 35: molecular docking

35

REFERENCES

Page 36: molecular docking

36

1. Anderson A. Chem Biol 2003; 10:787–97.2. Gilbert D. Brief Bioinform 2004:300-4.3. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al. J Comput Chem 1998:1639–62.4. Kalyaanamoorthy S and Chen YP Drug Discovery Today 2011 :831–839.5. Blaney, J. A J. Computer. Aided Mol. Des. 2012, 13–14.6. Berman, H.M. Nucleic Acids Res. 2000, 235–242.7. Weigelt, J. Exp. Cell Res. 2010, 1332–13388. Mandal, S.; Moudgil, M.N.; Mandal, S.K. Eur. J. Pharmacol. 2009, 90–100.9. Urwyler, S. Pharmacology. Rev. 2011, 59–126.10. Wilson, G.L.; Lill, M.A. Future Med. Chem. 2011, , 735–750.11. Fang, Y. ExpertOpin. Drug Discov. 2012, , 969–988.12. Kahsai, A.W.; Xiao, K.; Rajagopal, S.; Ahn, S.; Shukla, A.K.; Sun, J.; Oas, T.G.; Lefkowitz, R.J. Nat. Chem. Biol. 2011, , 692–700. 13. Shoichet, B.K.; Kobilka, B.K. Sci. 2012, 33, 268–272.14. Chandrika, B.R.; Subramanian, J.; Sharma, S.D. Drug Discov. Today 2009, 14, 394–400.

Page 37: molecular docking

37

15. Durrant, J.D.; McCammon, J.A. Curr. Opin. Pharmacol. 2010, 10, 770– 774.16. Huang, S.Y.; Grinter, S.Z.; Zou, X. Phys. Chem. Chem. Phys. 2010, 12, 12899–12908.17. Englebienne, P.; Moitessier, N. J. Chem. Inf. Model. 2009, 2564–2571.18. Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J.. Nat. Rev. Drug Discov. 2004, , 935– 949.19.Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson,A. J. J. Comput. Chem., 2009: 2785-2791. 20. Morris, G.M.; Goodsell, D.S.; Huey, R.; Olson, A.J. J. Comput. Aided Mol. Des. 1996, 10,293–304.