Top Banner
MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB
70

MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

MOHAMMAD AKTERUZZAMAN

Advisor: DR. SHUVRA DAS

MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB

Page 2: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM

MODELING OF the MECHANICAL and HYDRAULIC COMPONENTS of a POWER STEERING SYSTEM.

SIMULATION OF THE MODEL BY MATLAB.

Model REPRESENTS THE DYNAMIC RESPONSES OF THE power Steering System AND is CAPABLE OF ESTIMATING the effect of parameters on system response.

Model is used to study the effect of various system parameters on system response.

Page 3: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

PRIOR WORK

Discussion of Reference Model : Ali Keyhani : He presents the identification of the

dynamic model for a power steering system constructed using a rotary valve based on Mathematical (ODE).

Jose J. Granda : Analyze a multi energy non linear system using a bond graph model.

Joel E. Birching : He describes a method of applying the orifice equation to a steering valve along with the procedure for experimentally determining the flow Co-efficient for this equation.

Page 4: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Prior Work

AMESim (Object oriented software) :This case

study gives us a good understanding of how

AMESim can be used to construct parameterize

and analyze complex hydro-mechanical

dynamic model like power steering system.

N.Riva, E.Suraci (ADAMS based work) : A methology has developed to simulate the vehicle dynamics through Adams Car and Matlab co-simulation.

Page 5: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Prior Work

We took Ali Keyhani’s dynamic power steering

model consisting of ordinary differential

equations for Mechanical and Hydraulic system.

Some of the design Parameters are difficult to

obtain. Ali Keyhani used experimental data &

least square approach to determine these

parameters.

Page 6: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.
Page 7: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.
Page 8: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ACTUAL POWER STEERING SYSTEM :

Page 9: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

SCHEMATIC DIAGRAM OF HYDRO-POWERSTEERING SYSTEM

Page 10: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL : Mechanical subsystem

Page 11: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL : Mechanical subsystem

The equations for the steering column, pinion and rack can be written :

Equation 1 :

Equation 2 :

Page 12: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL : Mechanical subsystem

Where Td=Torque generated by the driver,Theta1=rotational displacement for the steering column,K2=tire stiffnessB2=Viscous damping coefficientB1=friction constant of the upper-steering column

X=displacement of the rackm= mass of pinionAp= Piston areaK1=torsion bar stiffness

J1=Inertia constant of the upper steering column

Page 13: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL : Mechanical subsystem

The following assumptions were made :-the pressure forces on the spool are

neglected.-the stiffness of the steering column is

infinite.-the inertia of the lower steering column

(valve spool and pinion) is lumped into the rack mass.

Page 14: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL hydraulic subsystem

Page 15: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL hydraulic subsystemBy applying the orifice equations to the rotary valve metering orifices and mass conservation

equations to the entire hydraulic subsystem the following equation are obtained : Equation 1 :

Equation 2 :

Equation 3 :

Page 16: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL hydraulic subsystem

Where Ps and Po =supply and return pressure of the pump.

Pl and Pr = cylinder pressure on the left and right side.Q = supply flow rate of the pumpA1 and A2 are the metering orifice areaRho = density of the fluidBeta=bulk modulus of fluidL=length of the cylinderCd= discharge co-efficient

Page 17: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI MODEL hydraulic subsystem

The following assumption were made :-there is no pressure drop on the fluid transmission lines

between the pump and the valve and the cylinder.-the wave dynamics on the fluid transmission lines are

neglected-the bulk modulus of the fluid is considered constant-the inertance of the fluid is neglected-there is no leakage at the piston-cylinder interface-the return pressure dynamics are negligible

Page 18: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI’S PARAMETER TABLE from experimental

Page 19: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ALI KEYHANI’S PARAMETER TABLE from experimental

Page 20: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Information lacking in ALI KEYHANI’s Work

-Missing relationship for variation of A(theta), Torque and Flow rate Q.

-His established parameters do not say from which type of vehicle they were obtained.

Page 21: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

How We got the value of A(theta)

Page 22: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Value of Q Q=1.5 GPM (gallon per minute) for

reasonable minimum with the quicker steering ratios for pavement cars.

Q=2.5 GPM for dirt .(reference : power steering Tech,

www.woodwardsteering.com)

□ Q=.0002 m3/s

(reference : H.Chai. Electromechanical Motion Devices, Upper addle River, NJ:Prentice Hall PTR,1998)

Page 23: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Value of Torque

Td=0-8 N-m is not enough to excite the lower steering column modes.

(reference : Ali Keyhani)Td=0-2 N-m is required at the

handwheel during normal driving ranges.

Td=15 N-m in extreme cases.(reference : H.Chai. Electromechanical Motion Devices, Upper

addle River, NJ:Prentice Hall PTR,1998)

Page 24: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Model

Using the equations and input data a MATLAB based program was written

Model parameters were adjusted to obtain the results reported by Ali Keyhani

Page 25: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ResultsComparison from Ali-keyani model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8x 10

6

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

Page 26: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ResultsComparison from Ali-keyani model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.5

0

0.5

1

1.5

2

2.5

3x 10

-3

time

disp

lace

men

t in

met

er

displacement Vs time

Page 27: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

ResultsComparism from ali-keyani model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8x 10

6

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time

Page 28: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Resultsfrom different study (Tom Wong)

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8x 10

6

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

Page 29: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Results from different study

Include the other results that I had suggested. (driver torque Vs. assist torques, also in previous pages copy fig from reference)

Page 30: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on theta(radians) Torque Td=2, 9, 15 N-m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time

thet

a in

rad

ians

theta Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.005

0.01

0.015

0.02

0.025

time

thet

a in

rad

ians

theta Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time

thet

a in

rad

ians

theta Vs time

Page 31: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on cylinder pressure Torque Td=2, 9, 15 N-m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.5

0

0.5

1

1.5

2

2.5

3

3.5x 10

6

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

0

1

2

3

4

5x 10

4

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8x 10

6

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

Page 32: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on rack Assist pressure vs. rotation angle (theta)Torque Td=2, 9, 15 N-m

0 1 2 3 4 5 6-0.5

0

0.5

1

1.5

2

2.5

3

3.5x 10

6

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

0 0.5 1 1.5-1

0

1

2

3

4

5x 10

4

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8x 10

6

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

Page 33: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on pump pressureTorque Td=2, 9, 15 N-m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.5

1

1.5

2

2.5

3

3.5x 10

6

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time

0 0.5 1 1.5 20

1

2

3

4

5

6x 10

6

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

2

4

6

8

10

12x 10

4

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time

Page 34: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on assist pressure w.r.t rotation on degreePump flow rate, Q=0.00014,0.00016,0.00024 m3/S.

Page 35: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on Pump pressurePump flow rate, Q=0.00014,0.00016,0.00024 m3/S.

Page 36: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on displacement (X)Pump flow rate, Q=0.00014,0.00016,0.00024 m3/S.

Page 37: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on cylinder pressurePump flow rate, Q=0.00014,0.00016,0.00024 m3/S.

Page 38: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on thetaPump flow rate, Q=0.00014,0.00016,0.00024 m3/S.

Page 39: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on Assist pressure on rotation angle (degree)J1=.0000322, .0000598 N-m-s2/rad

Page 40: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on pump pressure J1=.0000322, .0000598 N-m-s2/rad

Page 41: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on rack displacement (X) in meterJ1=.0000322, .0000598 N-m-s2/rad

Page 42: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on right cylinder pressure( N/m2)J1=.0000322, .0000598 N-m-s2/rad

Page 43: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on Rotation( radians)J1=.0000322, .0000598 N-m-s2/rad

Page 44: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect assist pressure( N/m2) on rotation angle ( degree)When m=4.76, 8.84 Kg

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8x 10

6

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8x 10

6

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

Page 45: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect pump pressure( N/m2) When m=4.76, 8.84 Kg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8x 10

6

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8x 10

6

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time

Page 46: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect displacement(X) When m=4.76, 8.84 Kg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.5

0

0.5

1

1.5

2

2.5

3x 10

-3

time

disp

lace

men

t in

met

er

displacement Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.5

0

0.5

1

1.5

2

2.5

3x 10

-3

time

disp

lace

men

t in

met

er

displacement Vs time

Page 47: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect on cylinder pressure

When m=4.76, 8.84 Kg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8x 10

6

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8x 10

6

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

Page 48: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect on assist pressure

with rotation when K1=27.651,31.33N-m/rad

0 1 2 3 4 5 60

2

4

6

8

10

12x 10

6

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8

9

10x 10

6

valve rotation

assi

t pr

essu

re

assit pressure Vs rotation

Page 49: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect on pump pressure

When K1=27.651,31.33N-m/rad

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2

4

6

8

10

12x 10

6

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8

9

10x 10

6

time

pum

p pr

essu

re in

N/m

2

pump pressure Vs time

Page 50: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect on rack displacement

When K1=27.651,31.33N-m/rad

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

0

1

2

3

4

5x 10

-3

time

disp

lace

men

t in

met

er

displacement Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.5

0

0.5

1

1.5

2

2.5

3

3.5x 10

-3

time

dis

pla

cem

ent

in m

ete

r

displacement Vs time

Page 51: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect cylinder pressure

When K1=27.651,31.33N-m/rad

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2

4

6

8

10

12x 10

6

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8

9

10x 10

6

time

right

cyl

inde

r pr

essu

re in

N/m

2

right cylinder pressure Vs time

Page 52: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph : Effect on theta

When K1=27.651,31.33N-m/rad

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time

thet

a in

rad

ians

theta Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time

thet

a in

rad

ians

theta Vs time

Page 53: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Summery and conclusion A model has been developed for the Hydraulic

Power steering system Several realistic assumptions were used in

model development. The model uses driver torque and pump flow

rate as inputs. The rotation of the torsion bar, the

displacement of the rack, and the pressures in the cylinder are outputs from model.

Page 54: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Summery and conclusion The model was used to develop response

curves similar to published work The model was used to simulate the effect of

driver torque on the system response. As the torque increases.....

The model was also used to simulate the effect of pump flow rate on the system response. As the flow rate increases....

Page 55: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Our Model descriptionWe got five equation from Ali-keyhani model

of hydraulic power power steering system : Equation 1 : Which is second order equation.For Matlab programing we can break the

second order differential equation by two first order equation which is below :

Let, y(1)=theta, y(2)=theta’ , so we can writeY(1)’=y(2) y(2)’=1/J1(Td-B1 * y(2)+K1(y(1)-y(3)/r))Where y(3) = X ( comes from equation 3)

Page 56: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Our Model description

Similarly for equation 2 also second order equation can write by two first order differential equation,

If y(3)=X, y(4)=X’ So, y(3)’=y(4)Y(4)’=1/m(K1/r(y(1)-y(3)/r)+P.Ap-

B2.y(4)+K2.y(3))

Page 57: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Our Model description

For hydraulic equation 3,4 and 5,If we let y(5)=Ps

y(6)=Pry(7)=Pl

Then y(5)’=Beta/Vs(Q-A1*Cd*Sqrt 2*(y(5)-

y(6))/d-A2*Cd*Sqrt 2*(y(5)-y(7))/d)

Page 58: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Our Model description

y(6)’=Beta/(Ap(L/2-y(3)))(A1 Cd Sqrt 2*(y(5)-y(6))/d-A2*Cd*Sqrt 2*(y(5)-Po)/d)+Ap*y(4))

y(7)’=Beta/(Ap(L/2+y(3)))(A2*Cd*Sqrt 2*(y(5)-y(7))/d-A2*Cd*Sqrt 2*(y(7)-Po)/d)+Ap*y(4))

Page 59: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Our Model description

So, our equation is seven and variable is seven, see below

Variables arey(1)=theta, y(2)=theta’,y(3)=X,y(4)=X’ ,

y(5)=Ps ,y(6)=Pr,y(7)=Pl Equations are1. Y(1)’=y(2) 2. y(2)’=1/J1(Td-B1 * y(2)+K1(y(1)-y(3)/r))

Page 60: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Model description3. y(3)’=y(4)4. Y(4)’=1/m(K1/r(y(1)-y(3)/r)+P*Ap-

B2*y(4)+K2*y(3))5. y(5)’=Beta/Vs(Q-A1 Cd Sqrt 2*(y(5)-y(6))/d-

A2*Cd*Sqrt 2*(y(5)-y(7))/d)6. y(6)’=Beta/(Ap(L/2-y(3)))(A1*Cd*Sqrt

2*(y(5)-y(6))/d-A2 Cd Sqrt 2*(y(5)-Po)/d)+Ap*y(4))

7. y(7)’=Beta/(Ap(L/2+y(3)))(A2 Cd Sqrt 2*(y(5)-y(7))/d-A2 Cd Sqrt 2*(y(7)-Po)/d)+Ap*y(4))

Page 61: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Showing program and Simulation in Matlabfunction F=odefile(t,y)% theta=y(1),theta'=y(2),X=y(3),X'=y(4),Ps=y(5),Pr=y(6),Pl=y(7)Ap=12.6*0.0001;Td=15;B1=.1083*1200;B2=2679;J1=.000046;m=7.5;K1=1.8434*20;K2=160721*17;r=.008;%Q=0.0002;Q=.00027; d=825; Vs=8.19*0.000001; beta=5515*100000; L=.15; Po=0.0;Cd=0.6;E1=(1/J1)*Td;E2=(1/J1)*B1;E3=(1/J1)*K1;E4=(K1/J1)/r;G1=(1/m)*(K1/r);G2=(1/m)*(K1/r/r);G3=(1/m)*Ap;G4=(1/m)*B2;G5=(1/m)*K2;H1=(beta/Vs)*Q;H2=(beta/Vs)*Cd;S1=(beta/Ap);y(1)y(3)

Page 62: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Showing program and Simulation in Matabif y(1) <= -6*3.14159/180 r13 = 0.0; r23 = 20*0.000001;end if y(1) >= 6*3.14159/180 r13 = 20*0.000001; r23 = 0.0; endif -6*3.14159/180 <= y(1) <= 0.0 r13 = 0.0001909*y(1)+20*0.000001; r23 =20*0.000001; endif 6*3.14159/180 > y(1) > 0.0 r13 = 20*0.000001; r23 = -0.0001909*y(1)+20*0.000001;endr13r23F(1)=y(2);F(2)=E1-E2*y(2)-E3*y(1)+E4*y(3);F(3)=y(4);F(4)=G1*y(1)-G2*y(3)+G3*(y(7)-y(6))-G4*y(4)-G5*y(3);F(5)=H1-H2*r13*sqrt(2*(y(5)-y(6))/d)-H2*r23*sqrt(2*(y(5)-y(7))/d);F(6)=(S1/(L/2-y(3)))*(r13*Cd*sqrt(2*(y(5)-y(6))/d)-r23*Cd*sqrt(2*(y(5)-Po)/d)+Ap*y(4));F(7)=(S1/(L/2+y(3)))*(r23*Cd*sqrt(2*(y(5)-y(7))/d)-r13*Cd*sqrt(2*(y(7)-Po)/d)-Ap*y(4));F=[F(1);F(2);F(3);F(4);F(5);F(6);F(7)];

Page 63: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Showing program and Simulation in Matabclear;y0=[0;0;0;0;0;0;0];tspan=linspace(0,2,5000);options=odeset('reltol',1e-6,'abstol',1e-8,'outputfcn','odeplot');[t y]=ode23tb('odefile13',tspan,y0,options);figure(1);plot(t,y(:,1),'r');%axis([0 2 -0.2 1.2]);xlabel('time');ylabel('theta in radians');title('theta Vs time');hold onfigure(2);plot(t,y(:,6),'b');%axis([0 2 -10 8000000]);xlabel('time');ylabel('right cylinder pressure in N/m2');title(' right cylinder pressure Vs time');hold onfigure(3);plot(t,(-1*y(:,3)),'g');%axis();xlabel('time');ylabel('displacement in meter');title('displacement Vs time');hold on

Page 64: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Showing program and Simulation in Matabfigure(4);plot(t,y(:,5),'b');%axis([0 2 -10 8000000]);xlabel('time');ylabel('pump pressure in N/m2');title(' pump pressure Vs time');hold onfigure(5);plot(((180/3.14159)*y(:,1)),y(:,6),'g');%axis([0 2 0 8000000]);xlabel('valve rotation');ylabel('assit pressure');title('assit pressure Vs rotation');hold off

Page 65: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

References :

Dr.Christan Ebner, ‘ Steer-by-wire’ BMW

technik, May-00, seite-1

Paul Yih, ‘Toward Steer by wire’ Dynamic

Design lab, November 30, 2001

Tom Wong, ‘ Hydraulic power system design

and optimization simulation’ SAE technical

paper series, 2001-01-0479

Page 66: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

References :

1. Ali Keyhani ‘ Identification of Power steering system Dynamic Models’ ,Mchatronics Journal, February 1998

2. Granda J.J. ‘ Computer Aided Simulation of a Hydraulic Power Steering System with Mechanical Feedback’

3. Joel E. Birching ‘ Two Dimensional Modeling of a Rotary Power steering valve’ International Congress and Exposition, Detroit, March 1-4, 1999

4. AMESim ‘ Power steering system studied’ Technical Bulletin n 107

Page 67: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

References Sanket Amberkar, Mark Kushion,’

Diagnostic Development for an Wlectric Power steering system’, SAE 2000 World Congress, Detroit , Michigan,March 6-9,2000.

Paper No. 993079, An ASAE Meeting Presentation,’Adaptivecontrol of Electric Steering system fro wheel-type Agricultural Tractors’ by D.Wu, Q.Zhang.

Page 68: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

references

Page 69: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

references

Page 70: MOHAMMAD AKTERUZZAMAN Advisor: DR. SHUVRA DAS MODELING and SIMULATION OF HYDRAULIC POWER STEERING SYSTEM WITH MATLAB.

Response graph :Effect on rack displacement (X) mTorque Td=2, 9, 15 N-m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-2

0

2

4

6

8

10

12x 10

-4

time

disp

lace

men

t in

met

er

displacement Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0x 10

-5

time

disp

lace

men

t in

met

er

displacement Vs time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.5

0

0.5

1

1.5

2

2.5

3x 10

-3

time

disp

lace

men

t in

met

er

displacement Vs time