Top Banner
Module 1 Experimental Procedures Experiment 1. What’s in the Spectrometer? Identify and ident elements ify the pa of th the of t spectrometer he light. shown in Fig. 9 in the open spectrometer unit Experiment 2. LambertBeer’s Law Prepare flasks. 0.01, 0.02, 0.03, 0.04 and 0.05 M aqueous solutions of CoCl in volumetric calculations. hexahydride When (CoCl making 6H up O) your and solutions, be sure note that you will be using cobalt 2 2 0.01 0.05 M 2 chloride and Your . TA will prepare a solu to tion use wit the h unk proper nown molecular concentrat mass ion, b in etw your een Make sure that the absorbance spectrometer is computer via USB port—you shoul plugged in and connected to the Kimwipe, and place the cuvette in the holder SpectraSuite program. Fill a cuvett d ew be it able hw to ater, w hear ipe t its f he sides of t an running— he cuvet and ope spectrometer Under te w n th it e ha the Spectrometer picture, expand menu menu select [+], and Rescan expand Devices. Properties Fin [+] d the absorbance spectrometer serial number s corresponds to the spectrometer. to check that the the screen, right click the spectrometer picture and choose Show Graph. and ll select Remove Spectrometer. If ther Right e is no click graph on dis any played other on Cl Integration ick the Pause [ Correction box. This box should remain checked throughout all experiments. Time = ] 10 button ms, Average and change = 10, the and parameters Boxcar = 10. at the Check top the of the Elect screen ric Dark to Cl in ick the Pla spectrum y[ ] to over begin time, the ac cl q ick uisiti on on t . he When dark you light no longer bulb [ see ] major reference to stor fluctuations spectrum. Check the Strobe/Lamp Enable box and repeat, clicking e the on da the rk yel should be accessible. C low light bulb [ ]t lick it to enter absorbance mode o store reference spectrum. Now and the the Absorbance Remove n click Pause [ . ] icon and empty your Take then fill with the solution. P cuvette. a spectrum by clicking lac Play, e in Wash holder. with your first sample solution, empty, and spectrum. You can change the viewing then clicking parameters Pause of when the graph you feel using you [ have ] to a auto good sca parameters le, [ ] , to and vert [ ical [ of the graph using the scrolling wheel on the mouse. ]to ly scale the pan spectrum, the spectrum. ] toggle and You to manually can also zoom set in the and zoom out Cl th ick e File the men Save u. [ Under ] icon Desired to save Spec this trum, spectrum. yp select that the file t e is “.OOI” and the appendage to Do Processed t pressing the n’ Save. file access name Spectrum this is “.ProcSpec” fun and ction m through ake before sure window first. If the Save button isn’t activated, try clicking elsewhere in the Save 1
24

Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

Jul 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

Module  1  Experimental  Procedures    Experiment  1.  What’s  in  the  Spectrometer?  

• Identify  and  ident

elements  ify  the  pa

of  th  the  of  t

spectrometer  he  light.  

shown  in  Fig.  9  in  the  open  spectrometer  unit  

Experi  ment  2.  Lambert-­‐Beer’s  Law  

• Prepare  flasks.  

0.01,  0.02,  0.03,  0.04  and  0.05  M  aqueous  solutions  of  CoCl in  volumetric  

calculations.  hexahydride  

When  (CoClmaking  

6Hup  O)  your  and  solutions,  be   sure  

note  that  you  will  be  using  cobalt  2  

 2

• 0.01   0.05  M

• 2

chloride  

and  Your  .    TA  will  prepare  a  solu

to  tion  use  witthe  h  unk

proper  nown  

molecular  concentrat

mass  ion,  b

in  etwyour  een  

Make  sure  that  the  absorbance  spectrometer  is  computer  via  USB  port—you  shoul

plugged  in  and  connected  to  the  

• Kimwipe,  and  place  the  cuvette  in  the  holderSpectraSuite  program.      Fill  a  cuvett

d  e  wbeit  ableh  w

 toater,  w  hear

ipe  t  its  f

he  sides  of  tan  running—

he  cuvetand  ope

spectrometer  Under  

 te  wn  thiteh  a    

the   Spectrometer  picture,  expand  

menu  menu  

select  [+],  and  

Rescan  expand  

Devices.  Properties  

  Fin[+]  d   the   absorbance  

spectrometerserial   number  

s  corresponds   to   the   spectrometer.  

to  check  that  the  

• the  screen,  right  click  the  spectrometer  picture  and  choose  Show  Graph.  

and  

ll

select  Remove  Spectrometer.     If   ther   Right  e   is  no  

click  graph  

on  disany  played

other    on  

ClIntegration  ick   the   Pause   [

• Correction  box.  This  box  should  remain  checked  throughout  all  experiments.  

Time  =  ]  10  button  ms,  Average  

and   change  =  10,  

the  and  parameters  Boxcar  =  10.  

at   the  Check

top     the  of   the  

Electscreen  ric  Dark

to    

Clin  ickthe    Plaspectrum  y  [   ]  to  

over  begin  

time,  the  ac

clqickuis  ition  ont.  he    When  

darkyou     light

no    longer  bulb   [

see  ]  major  

reference      to   stor

fluctuations  

spectrum.   Check  the  Strobe/Lamp  Enable  box  and  repeat,  clicking  e   the

on     dathe  rk  

yelshould  be  accessible.    Clow  light  bulb  [ ]  t

lick  it  to  enter  absorbance  modeo  store  reference  spectrum.    Now  

 andthe    the

Absorbance  

Remove  n  click  Pause

[.  ]   icon  

and  empty  your  

Take  then  fill  with  the  solution.    P

cuvette.  

a  spectrum  by  clicking  lacPlay,  e  in  

 Wash  holder.

with    

your  first  sample  solution,  empty,  and  

spectrum.    You  can  change  the  viewing  then  clicking  

parameters  Pause  

of  when  the  graph  

you  feel  using  

you  [have  ]  toa    autogood  

-­‐scaparameters

le,   [ ]  ,  toand     vert[ical [

of  the  graph  using  the  scrolling  wheel  on  the  mouse.  ]to  ly   scale   the  

pan  spectrum,  the  spectrum.  

]  

toggle  and    You  to   manually  

can  also  zoom  set  

in  the  and  zoom  out  

Clthicke  File    the  

menSave  

u.  [  Under  ]  icon  

Desired  to  save  

Specthis  

trum,  spectrum.  

ypselect  

 

that  the  file  t e  is  “.OOI”  and  the  appendage  to  

DoProcessed  

t  

pressingthe  

n’

 Save.  file  

access  

name  Spectrum  this  

is  “.ProcSpec”  

funand  ction

m  through  akebefore    sure  

window  first.    If  the  Save  button  isn’t  activated,  try  clicking  elsewhere  in  the  Save  

1

Page 2: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• Remove,  the   new   solution,  

empty,  and  acquire  rinse  the  

a   new  cuvette  

spectrum,  with  your  

and   save.  next  sample.  

• solution.      

  Continue    Fill  

for  the  all  cuvette  samples  

with  of  

After  all   spectra  have  been   taken,   click  Overlay  Spectral  Data   [ ]   icon  and  select  one  of  your  saved  spectra.    Select  Processed  and  

your  graph.    

processed    

spectra.     This   should   overlay  

510

all  then  of  clyour  ick  

spectra  .    Repeat  onto   the  

for  same  all  of  

Cwindow  lick  on  

at  the  the  spectrum  bottom  

graph  of   the  

area,  screen  

then  and  

type  hit  e

“nter.  

”    Tinto  he  a

the  bsorb

Wavelength  ance  val

(nm)   text  

• respoverlaid  

of  

Do  aect

spectra  ues  

ive  colat   510   nm   will  

your  

 linear  fitors.  to  t

 Rhe  ecord  funct

tionhese  

 Avalappear  ues  in  you

to  r  the  noteb

right  ook

of  .  the   text   window   in   their  

approximate  unknown   sample  

uncertainty  and   using  

of   the  the    =  f(c

fit  ).    Read  

measurement?  calculate  

off  the  its  vaconcentration.lue  of  the  absorb

    Whanceat    for  

What   do   you   think   the   biggest  is   th

the  e  

 

Experi

sou

m

rces  

ent  

of  

3.  

error  

Arom

are?

ati

 

c  Hydrocarbons  • Prepare  

and  placea     icuvetn  hold

te  ehar.    lSet  f   to  

up  twothe  -­‐thiinstrument  rds   full  of  hexane,  

•Obtain  and  store  the  dark  spectrum  and  the  reference  spectrum  of  hexane.  

using  the  wipe  parameters  

the  sides  in  with  Experiment  

a  Kimwipe  

2.    

Add  Scale  

a  the  drop  

grof  aph  saturated  such  that  

naphthacene  

dropwise   until   peaks   are  you  can  resolve  

to  the  peaks,  hexane  

and  cuvette  continue  

and  to  acquiradd  

e  naphthacene  a  spectrum.    

• spectrum  each  time,  but  be  sure  to  rinse  the  cuvette  with  hexane  each  time.  procedure  for  anthracene  and

very    naphthalene

prominent.  .     It     Save  is  not  

the  necessar

spectrum  y  to  take  

and  a  repeat  referen

the  ce  

OpeOptions”.  

n   your  Under     saved  

the  spectra.     Right   click   on   spectrum  graph   and   select   “Graph  Layer  

• At  Selecti

the  on  wbottom  

indowright  .    Sel

Peaks  ect  the  Show

tab,  select    Pea

your  k  Ba

spectral  ine  Layer

line    andfrom  

corner   of   the   graph,  selselect   the   Peaks  

 pr[ethe  ss  OK

Spectrum  .    

Source  

]   icon.     The   Peak  FinPeak

din   Finding  g  toolbar  

toolshoubar  ld  ato  ppopen  ear  direct

the  ly  Peaabkove.   Propert

   Select  ies  the  wCindowonfigur

.    e  Set[   the  ]  icon  in  the  

absorbance  Width  until  the  

somewhat  number  

below  of  peaks  

the  

found  peaks  of  interest  and  increase  the  Minimum  

BaselPeak  ine  

you  see  on  the  graph.    Click  “Close”  to  exit

appr  the  w

oachindesow  the  .  number  of  significant  peaks  

Using  each  of  

the  

the  Previous  and  

in  the  Peak  Finding  tsignificant

ool  peaNexks  t  aPeaknd  

  [

bar)  in  your  notrecord

eb  the  

]  buttons,  position  the  green  cursor  on  

Use  the  wavel→ength  of   the  peak  with  the  

ookwavelengths  .  

(from  the  Wavelength  box  

for  estimate  

the  n=1  the  

 n=2  transition.    Using   the  highestone-­‐dimensional  

 wavelength

length,  l,  of  each  compound.    Plot  the  length  as  a  Particle-­‐  as  the

in  ph-­‐a-­‐Box  oton  energy  

of  coordinated  hydrocarbon  rings.  function  of  the  number  

model,  

 Experiment  4.  Fluorescence  of  Quantum  Dots  

2

Page 3: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

Tadescribke   ab

ed  sorptearl

ion  ier.  

spectra   of   three   samples   of   quantum   dots   using   the   procedure  

an  Locate  

electrical  the  fluorescence  

outlet,   in   pulsed  spectrometer

flash  mode  .  Check

and    tha

on.  t  the  

PlacXe  el  iga  htcuv  sou ged  

windows  containing   dots  etterce     wiis  thpl  ufoug

quantum  r   clinear  to  

• detAs  

ectbefore,  or  shou

make  ld  be  

sure  plugged  

that  in  SpectraSuite  to  the  

in  hola  der  stand

at  -­‐90°alone

is   recognizing    angl  cuvete.  

te  holder.    The  source  and  

Rescanspectrometers  from  the  menu.  

 Devices,  checking  that   the  serial  number  matches,  the  and  right  removing  

device  any  by  

other  using  

Cand  lick  

expand  the  spectrometer  

range   of   the  [+].  wavelengths  Be  sure  

picture  that   these  

and  under  fluorescence  

the  expanded  wavelength  

menu  parameters  [+],  select  Acquisition  

obtained   from   your   absorbance   measurements.  are  

If  in  not,  the  

• contact  your  TA.  Make  a  1  second  

sure  that  the  acquisition  

the  Strobe/Lamp  Enable  box.  You  should  hear  an  electrical  whine  from  theintegration  time,  1  scan  

is  paused,  to  average,  

and  then  and  

change  a  boxcar  

acquisition  of  10.    Also,  

parameters  

check    lamp.  

[  √  to  ]  

Acquire  maximum  peak.

spectra      Save  each  spectrum.  for   each   sample,   recording   the   color   and   the   wavelength   of   the  

• Use  quantum  

the  dots.  equation  

1.70  to   estimate  

 and  the

effective   masses  For  CdSe,  E  =   eV  and    =  0.13  =  

 0.45size   a  

 arof  e   ththe  e  

either  hole  effective  

band  do  masses,  

in   the  which  conduction  

gap

account  and  approximately  

m *c me m *v me

not  move  freely)  where  m

v

e

alence   bands   re

is  for  the  

s

an  fact  pectively   el

the  mass  of   electron.  that  the  

(

   Howelecectron  

 trwoelnsand  

l  do    in  

your  sou

results  of  discrep

agree  with  the  

 

rces   ancy?    particle  in  a  box  expression?  What  do  you  think  might  be  

Experiment  5.  Chloroform  •

thStudy  

a  sample  eir  func

the  tisetup  ons.    Be  

and  sure  identifyto  sketch  

  the   elements   of   the   homemade   interferometer   and  

• FTIR  spectrometer?  

holder  and  detector  be  placed  the  interferometer  

to  make  the  interferometer  and  take  notes.

a      fully  Whe

functional  re  should  

Turn  you   move  

on  the  the  laser  source.    Can  you  see  the  interference  p

interferometer   would  delay   stage?  

be   varied  Try  

to  it  take  out.    

an  During  FTIR  

a  spectrum?  scan,  attern

what  ?  What  

element  will  happen  if  

• interferogram  look  like  with  and  without  a  sample?  

  What   would  of  

the  the  

Move   to   the   Nic

S

oledow

• computer  interface.    Under  the  Win

Exp   et  

t   380   FT-­‐IR   and   open   the   OMNIC   software   program   on   the  

ClIR  ickscan  on.      tUnder  he  

the  Cicon  ollect  

to  header,  open  a  dia

set  logue    top  menu,  click  on  New  Window.  

window  that  allows  you  to  configure  the  

to  Interferogram.    Click  OK  to  exit.  the  number  of  scans  to  16  and  “Final  format”  

3

mariusztwardowski
Text Box
Page 4: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• Put  perform  

an  empty  a  background  

thin  cuvette  scanin  

scan   of   your   sample.     What  .  the    

holder  and  flush  with  nitrogen  for  60  seconds,  and  

• What  do  you  expect  to  see  in  the  spectrum?  

can  Fill  

be  the  

concluded  cuvette  with  

from  chloroform  the   observed  

and   then  interferogram?  

perform  a  

Set   the  spectrometer  

• concland   making  

usions.  the   appropriate  

to   the  transmission  change,   and

mode     repe

via  at  clicking  the   proc

the  edurExep    toSet   v  eicon  rify  

aygaourin    

several  Where  do  

peaks  you  

from  expect  

the  the  CHpeaks  Cl3  dat

to  a  aappear  nd  calcu

if  lathe  te  wsample  here  the  

is  deuterated  deuterated  

(CpeaDCks  l3)?shou  Pickld    

beWh.  

about  μ•

at  Remember  do

the  

?  e  s  K   represen

relation  t?    Would   its  va

  from  lues  b

our  e  differen

discussion  t   for  

of  CHClharmonic  

3  and  CDoscillators.  Cl3?  What  

Repeat   the   experiment   with   deuterated   chloroform   and   compare   your   results   to  

Experi

prediction.  What  are  some  possible  sources  of  any  

ment    6.  Essential  Oils  

discrepancies?  

Put  with  nitrogen  for  60  seconds  to  remove  water  and  C

an  IR  card  in  the  card  holder  in  the  FTIR  instrument,  O2  vapors

close  .  the  cover  and  flush  

Recoran  IR  card,  repeat  the  procedure  and  take  the  spectrum  of  the  sample

d  the  background  spectrum.    Put  several  drops  of  limonene  on  .  the  window  of  

• Repeat  the  procedure  with  the  carvone  sample  Try  or  internet  

to  assign  sources.  as  many  

 functional  groups  in  the  spectrum  as  possible  using  literature  

• relatively  low?    Recal

Why  l  the  ex

are  pressionsome  vibrational  

 for  the  vibfrequencies  rational  reson

relatively  ance  frequ

high  encyand    some  .  

What  differentiate  between  S  and  R  enantiomers  using  FTIR  ab

are   the   differences   between   the   spectra   of   the   two   compounds?t

Caωn0

sorp ion  spectroscop    

y?    you  

 

 Experiment  7.    Protein  Secondary  Structure  Determination  

o• Before starting, set the temperature on the heating bath to 50 C and turn on the peristaltic pump. While you are taking room temperature spectra, the bath will heat up.

• Using D2O as the solvent, make three 100 μL solutions with 20 mg/mL concentrations of the three proteins you'll be studying: one for Lysozyme, one for Myoglobin, and one of Ribonuclease A.

• Purge the spectrometer with nitrogen for 4 minutes and collect a background spectrum of the empty spectrometer with 2 cm-1 resolution and 16 scans. Save the spectrum. In experimental setup, set this background as the default background.

• Clean the CaF2 windows and Teflon spacer with water. Dry windows with lens paper. Dry Teflon spacer with a kimwipe.

• Load the CaF2 cell with 30 μL of D2O. Do not use the heating coil. The cell should be assembled in this order: tapered metal ring, tapered metal ring (opposite orientation), thick flat metal ring, lead gasket, CaF2 window, 50 μm Teflon spacer, CaF2 window, lead gasket, thin flat metal ring, threaded sealing cap. To load the cell, carefully slide in cell

4

Page 5: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

components up to and including the Teflon spacer. Drop 30 μL of sample into center of window. Gently lower remaining stacked components onto sample drop and screw the threaded sealing cap down. Tighten firmly by hand until you encounter resistance. Verify that there are no bubbles in your clear aperture.

• Place the entire cell in the Nicolet spectrometer and purge with nitrogen for 4 minutes. • Collect a D2O spectrum with 2 cm-1 resolution and 16 scans. Save spectrum. Collect a

D2O background spectrum, save, and set it as the default background. • Remove cell, dissemble, clean windows with water, and load Lysozyme.

-• Collect a 16 scan, 2cm 1 resolution spectrum of Lysozyme. Save the spectrum. • Remove cell, dissemble, clean windows with water, and load Myoglobin. • Collect a spectrum after purging. • Repeat for RNase A. • After collecting a room temperature RNase A FTIR spectrum, unscrew sealing cap and

slide on heating coil. Retighten. Make sure the heating coil orientation is correct such that it will stick out of the top window of the spectrometer when the cell is loaded.

• After purging, set the temperature of the bath to 100oC. • Collect spectra of RNase A as the temperature rises at ~7oC increments. Save the spectra

and record the temperature. The maximum temperature should be ~81 oC. • Turn off heater and allow to cool. When the cell is cool enough to handle, disassemble

and clean. • Compare Lysozyme, Myoglobin, and RNase A room temperature spectra in the 1600-

1700 and 1900-1300 cm-1 ranges. Can you distinguish different secondary structures from the Amide I spectra?

• Compare the RNase A temperature-dependent spectra over the same ranges. To observe changes, subtract the room temperature spectrum from the others (control, right click selects both and then select the subtract button). What changes? What is happening to the protein as you heat it?

• Experiment  8.  15-­‐MHz  NMR    

Appendix  this  experiment.  

B  contains  some  useful  information  and  photographs  to  help  you  through  

Fill  from  

a  the  sample  

magnet  and  insert  the  sample.  top  of  

vial  the  about  vial,  t

¾  hen  full  ploface    etaha  plnolast.  ic    Plcaap  ce  on  an  the  O-­‐ring  top,  

about  lift  the

half    top  

a  panecentimeter  

l  on  the  

5

Page 6: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• Turn  on  the  15  MHz  spectrometer  and  the  oscilloscope.    

on  the  spectrometer  are  connected  as  shown  in  the  figure  below.    Verify  that  the  blue  cables  

•  

is  Step  off.  1:    These  View  pulse.

switches      Make  

let  us  sure  that  the       A  pulse  switch  is  on  and  the  B  pulse  switch  

disconnect  connect  A-­‐B  

the  OUT

blue    to  C

cable  hanne

from  send  electronic   signals   (pulses)   to   the  magnet.    Next,  

loose.     Remember   this   configuration;  l  1  on  

the  theA-­‐B    oscil

IN  loscope,  port   on   the   spectrometer   and  use   it   to  

pulse  generator’s  input  into  the  magnet)  every  you  

time  lyou  etting  

want  the  

to  MIXER  view  

OUthe  T  cable  hang  

will  connect  the  cables  in  this  pulse   (the  

until  Change  

you  the  areparameters    able  to  view  

on  ththe  e  pulsoscilloscope  

e.    Meas(vertical  and  horizontal  zoom  and  

fashion.    pan)  

Whthe  

ypuls  wo

euld  us  weing    want  tothe  curs

 usorse    a  son  qthuare  oes  pulscillos

ecour

 fopee  and  record  the  length,  or  duration,  of  

r  th.    Whis  pur

at  pois  thsee?    purpose  of  the  RF  pulse?    

6

Page 7: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• Step  return

2:  inView  g  the  

FIcaDbl.es      Set  to  up  the  the  origoscilloinal  set

scopupe    (Ato  view

OUT   to   the   oscilloscope).     This   is   the-­‐B  IN  and

 the    Afree  -­‐B  OUT

indu  ctreion  conne

decactey  d(FI,  MIXER  D)  by  

receivinexperiment  

g   the  to  pobserve  ulse.     Adjust  

the   FIthe  D,   the  

oscilloscope  time-­‐domain     configuration  

response  you   will  

of  usethe     thr

sample  oughout  

after  the  

oscilsignifica

lating  nce  signaof  this  

l;   this  valu

is  e?  t  he  HowFI  Dis  .  tMehe  asFIurD  e   the  

so  fthat  que

you’re  

signal  rperodu

ncced?y   o  Wf   thable  e   F

to   observe   an  

signal?   have  to  mix  hy  

ID

What  information  does  it  give  us?  Why  do  we  is  the  it  .  an  Whoscilat   ilsa  tthing  e  

signal  

    With   thefrequ

from  the  sample  with  a  reference  signal?  Step  

the  

coming  

frequency  ency  3:   Tun

adjue  

and  stto    setreson

watch    to  coa

an

the  rse,  t   frequen

oscilloscope.  turn  th

cy  e  tuni

an

 ng  d   optimize  knob  on  the  

sample  pulse  

 

oscillations   in   the   FID   should   change   as   you  The  

adjust  intensity  of  the  FID  

generaheight.

and  tor  number  to  adjus

of  t  

oscilyou’ve  

lations  found  

shoulthe  resonant

d   decrea  se  frequency,  as   you   get

you     closer   to   the  

the  reso

tuning.  nant   fr

The  eque

number  ncy.   Whe

of  n  

intoscilensitlations.y  of  

   the  NowFID     aadjust  s  you  

the  do.  Not

height  e  the  

of  peathe  shoulsample  d  see  

k  that  changes  in  an  the  exponential  

the  magnet   and  

decay  

most  dramatically  watch  without

the    

remember   it—later,   when   you   need   to   “reach  and  

• Consample  is  at  the  optimum  height  and  FID”,  

cept

this  

 check:

is   the   peak   you’ll   be   monitoring.  you  the  see  t

  Adjua  maximum  st  

in   the   intensity   of   the  

 Before  proceeding,  check  that  yohe  lu  undargestthe   ru

 FID.bber  

     o-­‐ring   so   that   the  

that  cause  the  FID  signal  to  decay.  What  are  their  relative  ertime  stand

frames?    the  thre

What  e  proces

does  sesit    

mean  to  have  a  90  degree  or  a  180  degree  (π/2  

• Step  other  angles  that  would  achieve  the  same  result?  rotated?  

4:   Create  

 Why  does  

a   π/2  

finding  

pulse.

the  90  degree  pulse  maximize  or  π)  puls

our  e?  What  

signal?  exactly  Are  there  

is  being  any  

Watch  the  scope  as  you  do  this.       T

Wure  n  kthe  now

A  -­‐tWihatd  thlengt   kno

h  b  of  tothe     adpuljusse  t   this  e  π/2  puls

we  

reach  hen  length

we  .  

a  maximum  

move  are   several  

the   A-­‐possible  

in  the  intensity  of  the  FID  (the  peak  you  noticed  

Width   knomaxima—you  b   more   than  

should  make  sure   that   the  one  in  you  Step  

use  3).  doesn’t    There  

• Step  observe  

5:  Create  your  90  

a  degree  π  pulse.

pu    Doulse.  M

bleae  thsuere  halfway.  and  record  

  Next,   change   instrument  

 width  of  pulstehe    tol  a  engtπ  h  of  the  pulse.  

setup   to  

thmaximum,  e  correspo

and  ndi

how  ng  FID

the    lootime  k  like

delay  ?    Con

of  siderthe  

 response  whether  y

should  ou  expe

pulsct  e  th(1e8  s0i)gnal  .  What  should  

Step  4.    Reconnect  AB  OUT  to  AB  IN  and  MIXER  OUT  to  Chn  1  compare  on  the  scope  

to   the  to  be

FID    at  of  a  

changing  without  

The  FID  shoulany  

d  other  appea

settings.  

to  have  r  to  be  fl

 Observe  at.  If  your  

the  FID  FID  is  notand  

 entcompare  irely  fla

wit,  wthha  yot  urwoul  pred  dcaicuse  tions

it.    

• the  FID  signal  decays.  What  is  the  net  magnetization  of  the  sample  at  this  time?  

having  Step  

instrument.  

6:  

nonzero  oscillations  in  intensity?    Explain  

both  Create  

 A  Set  and  two  

the  B  π/2  

delay  on  will  

pulses  

time  allow  

to  

usin

10  us  g  

ms  to  differensend  on  the  

more  t  chan

the  state  

pulse  complicated  n

generator.  

els.

of  the  system  right  after  

   Turn  pulse  on  the  B  Channel—

the   units   on   the   pulse   programmer   display   and   especially   the    Be  

white  carsignals  eful  to

to    nothe  

dot   that  te  

represents  pulse   using  

a  the  decimal  

same  point.  technique  

 Switch  as   before.  

to  FID  view  What  

and  do   y

adjust  ou   expe

B-­‐WIDct   th

TeH   c  otorr   feisndpo  a  ndπing  /2  

7

Page 8: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

FIchannelStep  

D  to  

7:  

look    and  one  on  tCreate  

like?  

a  

Why  

π/2he  B  channel–π  

is  the  

sequen

FID  not  

ce.?        

zero  after  sending  two  π/2  pulses,  one  on  the  A  

echoforming

  ex  pera  18

i0ment.  degree  pulse  with  a  delay  

As  itime  n  Step  5,  double  the  width  of  your  B  pulse,  

Transform,  and  adjust      Wh

the  at   dfrequency  o   you   obs

of  erthe  ve?  

spectrometer    of  Set  10  up  msthe  .    Thscope  until  

is  is  the  

you  to   view  

setup  

observe  the  for  Fa  

a  ourpeak.    

spinier    

Record  maximum,  

the  location  

the  FID  agaiFWHn.    Me

M,  asas  of  best  this  

you  peak  and  the  peak  width  (estimate  the  full  width  at  half  

would  expect  to  see  urmultiple  e   the   fr

can)  eque

and  

peaks  nc

point   11).  for  y  note  o

the  units.    Now  set  up  the  scope  to  view  

after   Expt     Why   don’t   we  ethanol  f   the  FID

(if    and  you’re  

compare  not  sure  

this  why,  to   the  

revisiFT.  t    We  

have  this  

using  experiment?  

this   instrument     Calculate  

between  the   energ

2  y  peaks  differen

with  ce  a  (inthese    Hz)  

multiple  that  we  

peaks  would  

in  expa  ect15  

2   ppm  difference   from   each     tother.  o  MHsee  z  

• CStep  ompare  this  to  

8:  Dephasinthe  line

T

g  and    wiLifetime  dth  you  o

inbs  glycerol.erve  in  th

   Here  e  FT.

w  e  will  study  the  dephasing  and  

lifetime  2

of  glycerol   in  water.    We  

T

will   focus  on  the  rates  due  to  dynamical  dephasing  ( )   due   to   evolving   interactions   (e.g.   “collisions”)   within   or   among   molecules,   the  lifetime   of   our   nuclear   spins   ( 1),   and   inhomogeneous   dephasing   (Δ)   due   to   static  variation   in   the   environments   around   different   glycerol   protons.     Because   solutions  with  different  glycerol  concentrations  have  different  environments  around  the  protons,  the  

To  

extent  

save  

of  inhomogeneity  and  the  rates  of  dynamical  dephasing  processes  may  vary  from  sample  to  sample. time,   each  

       group   will   conduct   this   experiment  

yielconcent

just   one  

d  concentration  of  glycerol,  and  the  data  from  different  groups  will  

using  be  combined  to  

YoΔ:  ur          FFind   the  

ration-­‐dependent  resul

ID  will   dpulsewidth  ecay   approximately  

of  pulse  A  ts.  which      

exponentially.  creates  a  π/2  pulse   in  your  sample.    

results  In  gener

in  al  a  thdrop  e  decay  

in  your  rate  

FID  includes  

intensity  contributions  

to  1/e  (37%)    Measure  

its  maximum,  the   time  

from  of   initial  

delay  

inhomogeneity,  dephasing,  value.  that  

Tand  lifetime,  i.e.  Δ,  T:  

2,  and  T12          Find   the   pulsewidth  

.    

You  are  now  set  up  to  perform  of  a  pulse  spin  echo  

B  which  experiment.  

creates   a    Useπ   pulse    a  delay  

in  time  your  

of  sample.    2.5  

accurate  initially.    

way  Record  

to  do  ththis  e   int

is  ensitto  measure  

y   of   the  the  echodistance     using   hor

from  izontal  the  highest  

cursors.     The   most  ms  

points  rather  than  trying  to  the  lowest  

this  the  baseline.    The  echo  wil

to  l  alwaysmeasure  

 appear  the  distance  

at  twice  between  the  delay  

the  time—highest  

whypoint  ?    Repeat  

and  

no  point.

echo  procedure,  

can   be  increasing  measured,  

the  recording  delay  time  for  each  measurement  by  

n’t  decayed  by  50  ms,  increase  the  step  size  to  10  ms.      the   delay   time   and   the   intensity  

2.5  

   If  the  echo  hasfor  ms  until  

each  

Tpuls1:  e           ("inversion  Set  up  your  pulsewidths  

recovery"   measurement).  such  that  pulse  

  To  A  is  

begin,  a  π  pulse  

measure  and  pulse  

the   maximum  B  is  a  π/2  

(initial)  

pulse  pulse  A  

B.  and  amplitude  

B  of  the  FID  following  pulse  B   A    Next,  turn  on  

As  and  measure  the  

without  pulse   on.  

  before,   start   at   a  maximum  time   delay  

(initial)  of   2.5  

amplitude  ms,   and  

of  continue  the  FID  following  

to   make  

8

Page 9: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

measurements  in  2.5  ms  steps.    If  the  echo  hasn’t  decayed  by  50  ms,  increase  

What  step  size  to  10  ms.      

the  

would  processes  y

and  

delay  time  ou  for  expethe  ct  spin  to  measurements  ch

inveglydo   Δ

echo  ange

and  with

   rcseiorn  o,  l  Tconcent2,   and   T   correspond   to   and   which  

values  of  Δ,  T2,  and  T1  were   found   in  your  rexperiments?    ecovery  

ratat  

1ioneach?      Pcoloncet   intentrnsatiiotyn.   v    eWhrsusat    

Experim

your  ex

ent  9.  3

pect

0

at

0-­‐

ions?

MHz

   E

 N

xplai

MR

n  any

 

 discrepancies.  Do  your  results  match  

 The  detailed  operating  procedures  are  presented  in  Appendix  C. It   is  essential   that  you   read   them  before   conducting   experiments,   for   the   safety   of   the   NMR  machine  and  for  the  success  of  your  measurements.  Make  sure  that  you  have  

 

thoroughly  read  all  the  NMR  material  in  this  manual  and  the  Appendix  before  beginning.  

Samples  D  is  a  mixture.  

A,  SpecB,  and  trum  I

 Take  C  contain  spectra  

nterpretationacetone,  of  all  four  

 anethanol,  samples  

d  Chemical  Determin

 

• and  methanol  in  

three   samples   and   the   identity   and   mole   fractions  to  determine  

of   the  the  

ationsome  identity  

 order.  

of    the  Sample  

first  

• Rationalize  the  line  positions,  integrals,  and  splitting  patterns  that  you  obs

mixture   in   Sample  erve.  

D.  

For  oscillation  

the   sample  frequency  

containing  determined  

methanol  in  the  

calculate  

ion,  

 

this  previous  

the   chemical   shift   in   ppm   from   the  

value  to  the  spectrum  in  the  frequency  domain  experimental  obtained  in  thi

section  s  sect

and  compare  

in  w

protons  on  adjacent  atoms  in  ethanol  using  your  spectrum.  

the  units  are  ppm.  For  

hich  

the   sample   containing   ethanol,   calculate   the   J-­‐coupling   parameter   values   for  

• the  Observe  

FID  the  is   visible.  

FID:  Enter   For  

 the  Time  Domain

solution  ‘acqi’  w

‘A’  indowyou  

 Measuremen,  should  hit  ‘FID’,

see    andts  

two    adoscillation  just  the  ver

frequencies.  tical  scale  unti

By  l  

moving  oscilExamine  

lation  frequencies  in  Hertthe  

the  

cursor  

linewidth

between   the   peaks   of   the   two   oscillations;   calculate   the   two  

:  Bring  tz.he    cursor  close  to  a  peak.  Enter  nl  dres  (nearest  line  

display  experiment.      Integrate  

resolution).  

your  spectrum

Compare   this   value   to   the   linewidth   from   the   TeachSpin  

button  to  clear

to    all  define  resets  

those  (zeroes)  

:    Clalready  ick  

regions  

[partial  in  memory.  

integral]  Click  to  display  th

and  e  inte

use  gral  the  lineleft  .  Tmouse  ype  cz  

using  used  to  

the  undo  middle  

mistakes.  mouse  

The  button  parameter  you  wish  to  

setintegrate.  s  the  inte

[resets]  The  grals

right    scale

mouse    and  can  

button  be  ad

can  juste

be  d  

contwill  

rolno.  w  Plbeace  

to gai

  qt

while  is  in   integral  mode.   Type     re n   cursor  

• regPrint  the  spectrum

ions)  to  get  uehe  rcursor  ied   for  

over  an   inte

the  grdesired  al   value

region  .     Type

and     ds  click   et ]  dpir  

the  (displ

ds  [S

a  iy  ntpeabutto

pl  pscale  pap  page

k   intn.  egraYou  

the  integral  values  displayed  underneath  the  spectrum.  l  

:  Type    into  the  command  line.      

9

Page 10: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

 

   

10

Appenhtditp://lx  A:

asp.colorado.edu/cassini/education/  Electromagnetic  Spectrum  

 

Please see: The Electromagnetic Spectrum

Page 11: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

Appendix  B:  Helpful  Hints  for  the  15  MHz  

The picture above shows the three main components of the instrument setup. The pulse generator is where you will program the pulses that get sent to the magnet: the duration of each pulse, the frequency, the delay time between pulses, and the pulse patters patterns. The magnet consists of coils of wire which create a magnetic field and a place to put a sample. The oscilloscope is where you will view both the input of the pulse generator into the magnet and the output of the sample after receiving pulses. Its controls are shown below:

1

2

3 4

5

11

Page 12: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

The five most important knobs are outlined in solid red. In display mode, 1, 2, 4, and 5 control the panning (POSITION) and zooming (VOLTS/DIV or SEC/DIV) of the display. In cursor mode, 1 and 3 move the cursors. To change between modes, use the buttons above the vertical and horizontal controls. The five buttons in a column left of the vertical and horizontal controls allow you to change the options displayed on the right-hand side of the screen. They allow you to change between vertical and horizontal cursors when you’re in cursor mode, and when you’re in MATH MENU (in the center of the picture), they will allow you to do to cycle through operation options (add, subtract, etc.) until you find “FT”. The pictures below show a pulse, which is what the pulse programmer sends to the magnet. When you first turn on the oscilloscope, it may take some adjusting to get the view on the left, but just keep fiddling with the zoom and panning until you see a single solid line. Zooming in even further (center it before zooming to avoid losing it off screen) will give you the image on the left, which is your pulse. The pulse duration is the width of this square pulse (time is x-axis).

When you switch the cables around to view the FID, it will look something like this:

12

Photograph by Keith Nelson, Timothy Swager, andPhotograph by Keith Nelson, Timothy Swager, andMariusz Twardowski. Used with permission.Mariusz Twardowski. Used with permission.

Page 13: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

The flat part to the far left is the baseline before the pulse was applied. The first large spike is mostly noise—it contains the pulse you applied, and it overwhelms your signal response until a short time later, when you see the second smaller peak next to it (see arrow). This is the signal you will monitor when trying to maximize the FID. The long oscillation afterwards is the difference between your reference pulse and the natural frequency of the proton precessions, and is what you will minimize by adjusting the frequency on the pulse generator. Afterwards your signal should look something like this:

Note that the oscillations after the signal are almost completely gone. Another helpful visual is a spin echo:

At this point in the experiment you will have set up two pulses, which are the first two FIDs you see here. The last signal, which lacks the spike characteristic of a pulse sent to the instrument, is your echo! The echo can be much less pronounced that what you see here, but you will know to always look for it at the same distance from the second pulse that the second pulse is from the first. If that doesn’t seem obvious, review the process that causes the echo. Finally, this is what a FT of your signal should look like:

13

Page 14: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

Note how broad this peak is (and how poor the signal-to-noise is) in comparison to the nice sharp peaks you see in the 300 MHz experiment!

14

Page 15: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

Appendix  C:  

 How  to  Obtai 1

 

Before   ejecting   the  

Step

previous  

 1:    Ge

sample  

t  a  lock

that  

 sig

has  

nal

been  

and  shim    

n  a   H  NMR  

checking  the

there  should   always   be   a   sample   in   the  

 Acquisition  Status  

left   into   the   instrument   (

 wind

probeow.  

)   make   sure   that   the   spinner   is   off   by  

Me

 • To  

nu  buttoeject  the  

nssample    windo

and  w  and

to  recover    click  on  

the  eject

spinner  .  

(turbine),  click  the  

 

Acqi  button  in  the  

 

   

 • Remove  

into   the  the  spinner  

sample  and  that  clean  

is  currently  the  outside  

in  the  of   the  

probe.  NMR  

 Carefully  tube  with  

insert  a  KimWipe.  

your  

 

sample    Position  

tube  

thallow  e   tube

the     isample  nto   the  

the  magnetic  homogeneity  of  the  sample.  to  spinner  be  rotated  

with  at  the  a  frequency  depth   gauge.  

of  20  The  Hz  inside  

purpose  the  of  magnet,  the   spinner  

increasing  is   to  

15

Page 16: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• Csplimb  inner  

the  on  ladder  the   air  

to  cuin

reach  

sertshion  

.

the  

 thatop  t   flof  owthe  s   throu

magnet  gh   t

and    

carefully  position  the  

• computer  and  click  

20  Hz Lo

he  

ck

top  NMR  probe.     Return  tubte  o  atnd  he  

Set  adjusting  the  bottom  parameter.  

the  spinner  rate  to    by  clicking  the    button   in  the  Acqi  window  and  

In  shouthe  ld  command  

From   here,  set  the  

you  shimline  -­‐coilat  the  

have   two  s  to  r

top  

choices.  easof  onablythe  main   ype

   good

window,    values  to

t

Option   1   will   automatically    star

 ‘rts’  

go  

t  wi

straight  

thand.    enter  ‘

lock,  

best’.  This  

shim,  

Option  2  allows  for  manual  shimming  and  locking.  perform  the  selected  experiment,  which  means  you  can   to  

 

mid-­‐Step  and  3.    

Option  1:  Automatic  • Cl

of  the  monitor.    If  you  do  not  see  the  Walkup  button,  expand  theick  on  Walkup  tab  in  the  Tcl/dg  window,  which  is  present  on  the  bottom  left  area  

   window.  

   

16

Page 17: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• Select  type  of  

the  experiment  appropriate  

you  solvent  would  

from  like  to  

the  run  dropdown  (in  our  case,  

Solvent  1H).  

menu,  

not  start  automatically,  click  the  Start  ACQ  button.  If   the  

then  experiment  

click  on  does  the  

   

 

 

Option  2:  Manual  • Click  on  the  Acqi  Tab  and  the  Acquisition  window  will  appear.  

   

•  

 

Cl  ick  on  Lock

 button.    Check  that  the  LOCK  is

Initially  

 off.  

quantthe  lockpower

ity,  the  whilspinnere  

1the  

 rightis  off

 .  increases).    Set  

lockgain

the  spin    The  to  20  Hz  (left-­‐clicking  a  button  decreases  the  

 to  20  and  the    to  2spinner  8.  

should  now  be  on.    Also  increase  

1 The lock power and lock gain levels depends on the concentration of the deuterated solvent, the number of deuterium atoms in the solvent and the relaxation time of the deuterium in that particular solvent.

17

Page 18: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

 •

 

Adjust  the  magnetic  field  frequency  Z0  shim  (units  

deuThe  

tegreater  rium  resonance  field.  

the   number   of   sine   waves,   the   poorer  are  H

the  z),  until  

match  a  sine  

of  wave  Z0   wi

is  thseen.       the  

   

18

Page 19: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• If  the  lock  is  near  resonance,  the  wave  looks  like:  

 •

PoIf   the  

showwavweer

 

amplitude  2

is   too   low,   increase   the   ,   and,   if   necessary   the  

 

len  ngthuntil     isthe     seen,  

signal  and  is  tbetween  hen  

50%  andLock   ain

,    100%G.    Continue  to  adjust    until  

Loone  ck  

below  should  appear.      click   the   h ck   ste

Z0Lock   on   button.     T e   lo p   function  

•   Ifthat    phas

the  e  islock    not  

signal  set  proper

is  maximized.  ly,  adjust  the  

decrease  the  Lock  Gain.     If  lockphase

 

the   signal    appears  in  steps  of  

to  –be  1  or  satu+1.  raYtoued    w(>=  ill  not

100),ice  

 

2 A too high Lock Power (>40) is saturating the lock signal. Saturation is signaled by the fact that the lock level is very erratic. Large values for Lock Gain give a noisy lock signal. Reduce Lock Power and adjust Lock Gain to maximize the lock level.

19

Page 20: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

• Now,  coils  shim.  

that     Shimming  surround  

adjusts  the  

the   current   flow  

Here,  only  the  through  

“spinning”  a   series   of   differently  

 will  be  adsample.     (e.g.   the  sample-­‐

val

shaped  spinning)  shims  In  

to  

the  Z1  –  Z7

ACQUISITIONjusted.      

ues  of  Z1C,  Z2C,  Z1    wi

 andnd  

SHZ2  ow  in  order  to  maximize  the  lock  signal.  click   on   IM.     Start   making   small   changes   to   the  

 •

 

• (or,  ifWhen  

 necessarthe  lock  

y,  thesignal  

 Logock  Poes  abo

wvere    

su,  in  t100

he%  ,  Loreck  duc

up  wie  

In   the   command   line  Acqitype   which   sets   the  

ndtheo  w)lock  

Lo.ck    Gain  in  the  same  window  

 disconnects  from  the    window.  

and   shim   parameters   and  

 

20

Page 21: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

 Select   ,  

St

,  and  

ep  

the  

3:    Acquire  spectra  

• Main

 

for  nt=

p8rot  toon    set  

 Menu appropriate   and   .    Now,  type  in  

 NMtheR.    nu

 

 Then  mber  Setup

typof  e  transients  (acquisitions)  

Nucleusto  eight,  which  

Solvenis  t

ga  to  acquire  and  automatically  process  your  spectrum.  a  good  choice  

 •

 

UsualAfter  

ly,  the  

symmetric  the  transients   are   completed,   the   spectrum  

around  spectrum  

the  base  is   not  

of  a  prpeak.  oper

 ly  Auto-­‐phase  phased;

ffav.

  ththe  ewill    

be  

spectrbaseline

displayed  

um     iby  sn’t  typing  flat  on  and n’t  

the  command  window  or  by  using  the  macro  aph

screen.        iints

 If  one  doesn’t  work,  try  the  other.o    

   

• dscale  •

If  

 

Reference    the  x-­‐axis  disappears  at  any  point,  type  the  command   to  retrieve  it.  

that   is   used  the  comes  spectrum  

from  either  CHCl

to  3,  your  which  

solvent  is   in  

or  small  to  TMS.  

amounts  In  this  

in  example,  the   CDC

the  l3   sol

proton  vent.    

21

Page 22: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

Expand  the  NMR  scale  around  7-­‐  8  ppm:  click  on  the  Boxbutton  after  the  arrow  is  close  to  7  ppm.    Click  with  the  left  button

 button.    C  around  8.2  ppm.      lick  on  the  

 

right  

 • Expand  

nl

 

Clchloroform  ick  on  the  

peak,  then  button.  type  the  

 With  command  the  mouse,  

 (stbring  

rl(7.

display  

27p).

digital  resolution,  which  for  a  well  shimmed  ands  

the  for  red  nea

cursor  rest  line),  

very  

be  or  close  

This   will   place   the  probe  should   less  

nlthan    drto  the  

1  esH  toz.      

• Click  the  full    If  button  to  display  the  full  spectrum,  or  type    you  decid

red  e  to  uscursor  

e  the  on  TMStop    signaof   the  

l,  tynearest  pe  (rl=0.

line.  0p

f).     Type   the   command  

 and  press  enter.  

•  Integrate   the   spectrum

 

contresets

:     Click   .     The   integr line   will   be   displayed  

clickinuousl  

y.  al  

after  the  signal.  Re.     L  To  eft  

cutclick     the  on  intthe  egralpart  

integr   abinove  al  

tegral

slightly  each  peak

befor,   te  ype  the  czsignal     (clears  

and  allthen     reset

slightly  s)   and  

 peat  for  each  peak.    

22

Page 23: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

•  

 

To   display   the   values   of  

necessary  make    save  you

vp=r  file  

1

•Finally, w

 andthe    typeintegrals    ds  dpir

underneath    again.      

the   spectrum   type  ds   dpir.     If  

To  page

get    (meaning:  a  hard  copy  

plot,  wit

2

h  ith  your  the  svf

1H  (‘NMR,  filenam

plot  e’)  command.      

plot   the   ppm   scale,  the  plot  spectrum  

the   integral  typing  

resets,  pl  pscale  

plot  pir  pap  

ex

acquisition  parameters)  To

some  

pand     see   coupling  

buttonspatterns,   you   can   expand  

th

regions  

threshold  parameter  

dpf

.     In  by  ordclicking  er   to   ge

on  t   the

.     pe  With  ak   fre

of   spectrum  

the  queleft  ncymouse,  ,   first   set  

with  th

the   and

yellow  line  such  as  to   include  all   the  peaks  with  significance  (avoset  

ithe  e   peheightak  box  pi   of  ckitng  he  

 

• ppfhYosignau   alsz

ls).  o    Typcan  

e  print  

 toth  dei  seplayxpand

 thee  ped   rak  f

d  the  noise   level  

 provides  peak  position  in  heretzgioren  qby  uenc

typiiesng  .  

constant  values.  ,  which  is  very  

pl  usppfhz  eful  to  

pscale  extract

page   the  cou

.     Macrpling  

o  

 

EjectClick   ,   ,  

Wh,  make  en  you  have  finished

• acqi lock  off

sample  

spin  off•

 =  0,  make    

 =  0.  

turbine.    Wipe  the  sample  with  KimWipe,  and  

 • Substitute   your   with   a   sealed  

lockpower

sample.     Insert  

lock  gain

insert.  the   sealed   sample   in   the  

 

• ‘autolock’  to  no  and  ‘autoshim’  to  no.  Disable  auto-­‐locking  and  auto

Tr-­‐shimming  oubleshoot

features:  ing  

 Hit   ‘flags  and  conditions,’  toggle  

If  prompt  the  software  

by   right-­‐is  clnot  icking  responding:  

on   the   desk  Close  

top  and  back

open   the  program.  Open  a  command  

th‘terminal’.  en  ente

Enter   ‘su  acqproc’   into  the  command  ground,  line  to  kill  

paging  the  

tcurrent  o   ‘tools’,  

acquisition,  and   then  

respthen  tur

ond,n  i  tru  ‘srnu    acoff  qthe  proc

spectrometer  ’  to  re-­‐initialize  

(white  the  spectrometer.   still  

t  bacswitch  around  

If  back),  the  software  

wait  a  few  does  seconds,  

not  

k  on  before  re-­‐opening  the  software.    

23

Page 24: Module’1’Experimental’Procedures’ Experiment’1.’What ... · Module’1’Experimental’Procedures’ ’ Experiment’1.’What’sintheSpectrometer? ’ • Identify

MIT OpenCourseWarehttp://ocw.mit.edu

5.35 / 5.35U Introduction to Experimental ChemistryFall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.