Top Banner
Module 3 Module 3 Climate Modeling Theory - 1 Climate Modeling Theory - 1 William J. Gutowski, Jr. William J. Gutowski, Jr. Iowa State University Iowa State University
66

Module 3 Climate Modeling Theory - 1

Dec 30, 2015

Download

Documents

forrest-beck

Module 3 Climate Modeling Theory - 1. William J. Gutowski, Jr. Iowa State University. Module 3 Climate Modeling Theory - 1. GOAL: Understand basis for modeling climate from (almost) first principles. Module 3 Climate Modeling Theory - 1. OUTLINE (Part 1): Symbolism - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

William J. Gutowski, Jr.William J. Gutowski, Jr.Iowa State UniversityIowa State University

Page 2: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

GOAL:GOAL:Understand basis for modeling Understand basis for modeling climate from (almost) first climate from (almost) first principlesprinciples

Page 3: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

OUTLINE (Part 1):OUTLINE (Part 1): SymbolismSymbolism Conservation LawsConservation Laws

– massmass– thermodynamic energythermodynamic energy– momentummomentum

Equation of StateEquation of State Water in the AtmosphereWater in the Atmosphere

Page 4: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

OUTLINE (Part 1):OUTLINE (Part 1): SymbolismSymbolism

Page 5: Module 3  Climate Modeling Theory - 1

t timex west-east coordinatey south-north coordinatez vertical coordinate

latitude longitude

horizontal windu west-east component of v south-north component of w vertical wind

Some Symbolism

r V

r V

r V

Page 6: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

OUTLINE (Part 1):OUTLINE (Part 1): SymbolismSymbolism Conservation LawsConservation Laws

– massmass– thermodynamic energythermodynamic energy– momentummomentum

Page 7: Module 3  Climate Modeling Theory - 1

Conservation of “M”

dMdt

=?

Page 8: Module 3  Climate Modeling Theory - 1

Conservation of “M”

dMdt

≠0

Source/sink≠0

Page 9: Module 3  Climate Modeling Theory - 1

Conservation of “M”

∂ wM( )∂z

≠0

dMdt

≠0

Page 10: Module 3  Climate Modeling Theory - 1

Conservation of “M”

dMdt

≠0

∇ ⋅

r V M( )≠0

Page 11: Module 3  Climate Modeling Theory - 1

Conservation of “M”

∂ wM( )∂z

≠0

∇ ⋅

r V M( )≠0

Source/sink≠0

dMdt

≠0

Page 12: Module 3  Climate Modeling Theory - 1

Conservation of MassConservation of Mass(Continuity Equation)(Continuity Equation)

∂ρ∂t

=−∇⋅r V ρ( )−

∂ wρ( )∂z

= density [kg/m3]ρ

Source/sink = 0

Page 13: Module 3  Climate Modeling Theory - 1

Conservation of Mass

∂ps

∂t>0

Page 14: Module 3  Climate Modeling Theory - 1

Conservation of Water MassConservation of Water Mass

∂ρq∂t

=−∇⋅r V ρq( )−

∂ wρq( )∂z

+s(q)

q = specific humidity [kg-(H2O)v/kg-air]

s(q) = cond. - evap.

Page 15: Module 3  Climate Modeling Theory - 1

Conservation of Water MassConservation of Water Mass(column integral)(column integral)

∂W∂t

=−∇⋅r Q +E −P

E = sfc. evap.; P = precipitation

W = ρqdz0

r Q =

r V ρqdz

0

Page 16: Module 3  Climate Modeling Theory - 1

Conservation of W

(Precipitable Water)

r Q

r Q

E P

∂W∂t

≠0

Page 17: Module 3  Climate Modeling Theory - 1

Conservation of General Constituent, iConservation of General Constituent, i

∂ρqi∂t

=−∇⋅r V ρqi( )−

∂ wρqi( )∂z

+s(qi)

qi = amount of i [kg-(constituent i)/kg-air]

e.g., CO2, O3, etc.

Page 18: Module 3  Climate Modeling Theory - 1

Conservation of Thermodynamic EnergyConservation of Thermodynamic Energy~ First Law of Thermodynamics ~~ First Law of Thermodynamics ~

Heat input = internal energy) + (work done)

= heating/mass [J-kg-1-s-1]

dt

dp

dt

dTCH p ρ

1+=&

H&

Page 19: Module 3  Climate Modeling Theory - 1

Conservation of Thermodynamic EnergyConservation of Thermodynamic Energy~ First Law of Thermodynamics ~~ First Law of Thermodynamics ~

( ) HT

Cz

wV

t p

&r

θρρθ

ρθρθ

ƒ−?−=

ƒƒ

θ =T poo p( )R /Cp

Page 20: Module 3  Climate Modeling Theory - 1

Conservation of

Thermodynamic Energy

r V ρθ ∂ρθ

∂t≠0

r V ρθ

0?H&

wρθ

wρθ

Page 21: Module 3  Climate Modeling Theory - 1

0?H&

FSH RNET

RNET

Condensation

Page 22: Module 3  Climate Modeling Theory - 1

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

da

r V a,3dt

= (Forces/ mass)∑

Page 23: Module 3  Climate Modeling Theory - 1

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Forces/mass:Forces/mass: gravitygravity pressure gradientpressure gradient frictionfriction

Page 24: Module 3  Climate Modeling Theory - 1

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Rotating Frame

r Ω

r R

X

Page 25: Module 3  Climate Modeling Theory - 1

dr V 3dt

= (Forces/ mass)∑

−2r Ω ×

r V 3 +

r Ω

2 r R

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Rotating Frame

Page 26: Module 3  Climate Modeling Theory - 1

dudt

−uvtanφ

a+

uwa

=−1ρ

∂p∂x

+2Ωvsinφ−2Ωwcosφ+Frx

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Sphere, Rotating Frame

dvdt

−u2 tanφ

a+

vwa

=−1ρ

∂p∂y

−2Ωusinφ +Fry

dwdt

−u2 +v2

a=−

∂p∂z

+2Ωucosφ −g+Frz

rotation of direction

Page 27: Module 3  Climate Modeling Theory - 1

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Approximation: vertical

dwdt

−u2 +v2

a=−

∂p∂z

+2Ωucosφ −g+Frz

Page 28: Module 3  Climate Modeling Theory - 1

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Approximation: vertical

dwdt

−u2 +v2

a=−

∂p∂z

+2Ωucosφ −g+Frz

Page 29: Module 3  Climate Modeling Theory - 1

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Approximation: vertical

∂p∂z

=−ρg

Hydrostatic ApproximationAccurate to ~ 0.01% for weak vertical acceleration

Page 30: Module 3  Climate Modeling Theory - 1

dudt

−uvtanφ

a+

uwa

=−1ρ

∂p∂x

+2Ωvsinφ−2Ωwcosφ+Frx

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Approximation: horizontal, extratropical

dvdt

−u2 tanφ

a+

vwa

=−1ρ

∂p∂y

−2Ωusinφ +Fry

Page 31: Module 3  Climate Modeling Theory - 1

dudt

−uvtanφ

a+

uwa

=−1ρ

∂p∂x

+2Ωvsinφ−2Ωwcosφ+Frx

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Approximation: horizontal, extratropical

dvdt

−u2 tanφ

a+

vwa

=−1ρ

∂p∂y

−2Ωusinφ +Fry

Page 32: Module 3  Climate Modeling Theory - 1

v =+1ρf

∂p∂x

Conservation of MomentumConservation of Momentum~ Newton’s Second Law ~~ Newton’s Second Law ~

Approximation: horizontal, extratropical

u=−1ρf

∂p∂y

Geostrophic ApproximationAccurate to ~ 20 - 30%

Page 33: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

BREAKBREAK

Page 34: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

OUTLINE (Part 1):OUTLINE (Part 1): SymbolismSymbolism Conservation LawsConservation Laws

– massmass– thermodynamic energythermodynamic energy– momentummomentum

Equation of StateEquation of State

Page 35: Module 3  Climate Modeling Theory - 1

Ideal Gas Law

p=ρRTR = gas constantR = R(constituents)

Common practice:R = Rd = 287 J-kg-1-s-1

T = Tv

Page 36: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

OUTLINE (Part 1):OUTLINE (Part 1): SymbolismSymbolism Conservation LawsConservation Laws

– massmass– thermodynamic energythermodynamic energy– momentummomentum

Equation of StateEquation of State Water in the AtmosphereWater in the Atmosphere

Page 37: Module 3  Climate Modeling Theory - 1

q versus latitude & pressureq versus latitude & pressure[g-kg[g-kg-1-1]]

Note: small part of atmosphere, but ...Note: small part of atmosphere, but ...

Page 38: Module 3  Climate Modeling Theory - 1

0

20

40

60

80

100

120

-40 -20 0 20 40

esat(T)

Temperature [oC]

… … waterwater• saturatessaturates• changes phasechanges phase

Page 39: Module 3  Climate Modeling Theory - 1

q specific humidity [kg-kg-1] mass (H2O)v/mass air

e vapor pressure [Pa]partial pressure by water molecules

m mixing ratio [kg-kg-1]

mass (H2O)v/mass dry air

RH relative humidity [%]ratio: m/msat

Some Further Symbolism

Page 40: Module 3  Climate Modeling Theory - 1

EP P

Q Q

R

Water CycleWater Cycle

E

Page 41: Module 3  Climate Modeling Theory - 1

E

Water CycleWater Cycle

Heat absorbedHeat absorbed

Heat releasedHeat released

Page 42: Module 3  Climate Modeling Theory - 1

Water is thus a primaryWater is thus a primary form of heat transportform of heat transport

heat absorbed when evaporates heat absorbed when evaporates

released when water condensesreleased when water condenses

largest individual source of energy largest individual source of energy

for the atmospherefor the atmosphere

Page 43: Module 3  Climate Modeling Theory - 1

Water CycleWater Cycle

Radiation absorbed by water & re-emittedRadiation absorbed by water & re-emitted

Page 44: Module 3  Climate Modeling Theory - 1

Water is thus a primaryWater is thus a primary form of heat transportform of heat transport

heat absorbed when evaporates heat absorbed when evaporates

released when water condensesreleased when water condenses

largest individual source of energy largest individual source of energy

for the atmospherefor the atmosphere

andand greenhouse gas greenhouse gas

~ transparent to solar~ transparent to solar

absorbs/emits infraredabsorbs/emits infrared

Page 45: Module 3  Climate Modeling Theory - 1

RH vs. latitude & pressureRH vs. latitude & pressure[%][%]

RH

70 70

Page 46: Module 3  Climate Modeling Theory - 1

precipitation vs. latitude & longitudeprecipitation vs. latitude & longitude[dm-yr[dm-yr-1-1]]

[dm-yr[dm-yr-1-1] = [100 mm-yr] = [100 mm-yr-1-1] =[0.27 mm-d] =[0.27 mm-d-1-1]]

Page 47: Module 3  Climate Modeling Theory - 1

Lift Moist ParcelLift Moist Parcel

T

z

9.8 K/km

Page 48: Module 3  Climate Modeling Theory - 1

RH

T

z

z

Lift Moist ParcelLift Moist Parcel

Page 49: Module 3  Climate Modeling Theory - 1

RH

T

z

z

100 %

Lift Moist ParcelLift Moist Parcel

LCL

Lifting Condensation Level

Page 50: Module 3  Climate Modeling Theory - 1

Stable PrecipitationStable Precipitation

condensationcollision

coalescence

Page 51: Module 3  Climate Modeling Theory - 1

Stable PrecipitationStable Precipitation

condensationcollision

coalescence

Page 52: Module 3  Climate Modeling Theory - 1

T

z

Lift FurtherLift Further

LCL

Page 53: Module 3  Climate Modeling Theory - 1

T

z

Lift FurtherLift Further

Environment’s T(z)

Page 54: Module 3  Climate Modeling Theory - 1

T

z

Lift FurtherLift Further

Environment’s T(z)

Page 55: Module 3  Climate Modeling Theory - 1

T

z

Lift FurtherLift Further

Level of free convection

Page 56: Module 3  Climate Modeling Theory - 1

T

z

ConvectionConvection

Level of free convection

Page 57: Module 3  Climate Modeling Theory - 1

Module 3 Module 3 Climate Modeling Theory - 1Climate Modeling Theory - 1

Final Question:Final Question:How much heating by How much heating by condensation?condensation?

Page 58: Module 3  Climate Modeling Theory - 1

Use 1Use 1stst Law of Thermodynamics Law of Thermodynamics

= heating/mass [J-kg-1-s-1]

dt

dTCH p=&

H&

Assume: no work doneAssume: no work done

Page 59: Module 3  Climate Modeling Theory - 1

Apply to precipitating column

Page 60: Module 3  Climate Modeling Theory - 1

Heat released Mass condensed Mass falling out

P [m/s]

Apply to precipitating column

Page 61: Module 3  Climate Modeling Theory - 1

Heat released Mass condensed Mass falling out

Pρw [kgw-m-2-s-1]

Apply to precipitating column

Page 62: Module 3  Climate Modeling Theory - 1

Heat released LPρw [J-m-2-s-1]

Pρw [kgw-m-2-s-1]

Apply to precipitating column

Page 63: Module 3  Climate Modeling Theory - 1

Heat released LPρw [J-m-2-s-1]

Apply to precipitating column

Mass heated ps/g [kgair-m-2]

Page 64: Module 3  Climate Modeling Theory - 1

= Heating/mass = LPρwg/ps [J -(kgair)-1-s-1]

Heat released LPρw [J -m-3-s-1]

Apply to precipitating column

Mass heated ps/g [kgair-m-2]

H&

Page 65: Module 3  Climate Modeling Theory - 1

P = 1000 mm-yr-1 =3.2.10-8 m-s-1

Ps = 1000 hPa =10+5 Pa

[ ]spw

p

pCgLP

sCHdt

dT

ρ=

−= −1deg&

dT/dt = 7.7.10-6 deg-s-1 = 0.67 deg-day-1 (Radiation ~ -1 deg-day-1)

How much heating by condensation?How much heating by condensation?

Page 66: Module 3  Climate Modeling Theory - 1

Coming: Module 5 Coming: Module 5 Climate Modeling Theory - 2Climate Modeling Theory - 2

OUTLINE (Part 2):OUTLINE (Part 2):

RadiationRadiation

Surface ProcessesSurface Processes

Earth SystemEarth System