Top Banner
Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering School of Electrical and Computer Engineering Module 2: Op Amps Introduction and Ideal Behavior Introduce Op Amps and examine ideal behavior
67

Module 2 handouts part 1

Feb 08, 2017

Download

Engineering

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Module 2 handouts part 1

Dr. Bonnie H. FerriProfessor and Associate ChairSchool of Electrical and Computer Engineering

School of Electrical and Computer Engineering

Module 2: Op AmpsIntroduction and Ideal Behavior

Introduce Op Amps and examine ideal behavior

Page 2: Module 2 handouts part 1

Introduce Operational Amplifiers Describe Ideal Op Amp Behavior Introduce Comparator and Buffer Circuits

Lesson Objectives

2

Page 3: Module 2 handouts part 1

Operational Amplifiers (Op Amps)

Uses: Amplifiers Active Filters Analog Computers

Specialized circuit made up of transistors, resistors, and capacitors fabricated on an integrated chip

+Vs

-Vs

vo

v+ +

-v-

3

Page 4: Module 2 handouts part 1

Vs = 10V, 15V

Op Amps in Circuits

Active Element: has its own power supply Symbol ignores the +/- Vs in the symbol since it

does not affect circuit behavior

Symbol:+Vs

-Vs

vo

v+ +

-v-

+

-

+Vs

-Vs

vov+

v-

4

Page 5: Module 2 handouts part 1

Open Loop Behavior

+Vs

-Vs

vo

v+ +

-v-

vo= A(v+ - v-)

v+ - v-

voVs

-Vs

5

Page 6: Module 2 handouts part 1

V

Comparator Circuit+Vs

-Vs

vo

v+ +

-v-

vin

voVs

-Vs

<−>

−=00

ins

inso vifV

vifVV

vin

6

Page 7: Module 2 handouts part 1

Csin(ωt)

Example

+Vs

-Vs

vo

v++

-v- v+ - v-

voVs

-Vs

7

Page 8: Module 2 handouts part 1

i+ = i- = 0v+ - v- = 0

Ideal Op Amp Behaviorv+

v-

vo+

-

i+

i-

+Vs

-Vs

vo

v+

v- Ri

RovinAvin

8

Page 9: Module 2 handouts part 1

Buffer Circuit

vin = vo

vo+-

vin vo+-

vin

9

Page 10: Module 2 handouts part 1

Summary

Op amps are active devices that can be used to filter or amplify signals linearly

Ideal op amps:

Circuits: comparator and buffer

i+ = i- = 0v+ - v- = 0

v+

v-

vo+

-

i+

i-

10

Page 11: Module 2 handouts part 1

Buffer Circuit Basic Amplifier Configurations Differentiators and Integrators Active Filters

Remainder of Module 2: Op Amps

11

Page 12: Module 2 handouts part 1

Dr. Bonnie H. FerriProfessor and Associate ChairSchool of Electrical and Computer Engineering

School of Electrical and Computer Engineering

Buffer Circuits

Demonstrate buffer circuit behavior

Page 13: Module 2 handouts part 1

Introduce physical op amps in circuits Examine Buffer Circuit behavior

Lesson Objectives

13

Page 14: Module 2 handouts part 1

Use to boost power without changing voltage waveform

Buffer Circuit

vin = vo

vo+-

vin

vin

voVS

-VS

14

Page 15: Module 2 handouts part 1

Example: Without Buffer

vin R+vo+

15

Page 16: Module 2 handouts part 1

Vs = 15V

Physical Op Amps

Signal PIN

v- 2

v+ 3

-Vs 4

vo 6

+Vs 7

+Vs

-Vs

vo

v+ +

-v-

16

Page 17: Module 2 handouts part 1

Example: With Buffer

+-vin

+vo+

R

vin R+vo+

17

Page 18: Module 2 handouts part 1

Example: With Buffer

+-vin

+vo+

R

18

Page 19: Module 2 handouts part 1

Summary

Buffers boost the power without changing the voltage waveform

Demonstrated physical op amp circuits

19

Page 20: Module 2 handouts part 1

Dr. Bonnie H. FerriProfessor and Associate ChairSchool of Electrical and Computer Engineering

School of Electrical and Computer Engineering

Basic Op Amp AmplifierConfigurations

Introduce Inverting and Non-Inverting Amplifiers, Difference and Summing Amplifiers

Page 21: Module 2 handouts part 1

Introduce Inverting and Non-Inverting Configurations Difference and Summing Configurations

Introduce the Gain of a circuit

Lesson Objectives

21

Page 22: Module 2 handouts part 1

Non-Inverting Amplifiers

in3

32o V

RRR

V+

=

R

RRG :Gain

3

32 +=ino GVV =

+-vin

vo

R2

R3

R1

22

Page 23: Module 2 handouts part 1

If R2 = R3 = 200Ω,

Since,G > 1, the input is amplified

If G < 1, the input is attenuated

Non-Inverting Amplifier Example+-vin

vo

R2

R3

R1

23

Page 24: Module 2 handouts part 1

Inverting Amplifier

ino GVV =

in1

fo V

RRV −=

+

-

vin

vo

Rf

R1

24

Page 25: Module 2 handouts part 1

R1 = 1000Ω, Rf = 2000Ω

If,G > 1, the input is amplified If G < 1, the input is attenuated

Inverting Amplifier Example

+

-

vin

vo

Rf

R1

25

Page 26: Module 2 handouts part 1

Difference Circuit

+

-

v1

vo

Rf

R1

v2

R1

R2

)( 121

Fo VVRRV −=

26

Page 27: Module 2 handouts part 1

Difference Circuit

+

-

v1

vo

Rf

R1

v2

R1

R2

)( 121

Fo VVRRV −=

27

Page 28: Module 2 handouts part 1

Summing Amplifier

+

-v1

vo

Rf

R2

v2

R1

2

F2

1

F1

2211o

RRG

RRG

VGVGV

−=−=

+=

28

Page 29: Module 2 handouts part 1

Summary

Gain: Amplifier Circuit Configurations

Non-Inverting Amplifier Inverting Amplifier Difference Amplifier Summing Amplifier

ino GVV =

29

Page 30: Module 2 handouts part 1

Dr. Bonnie H. FerriProfessor and Associate ChairSchool of Electrical and Computer Engineering

School of Electrical and Computer Engineering

Introduce Integrating and Differentiating Op Amp Circuits

Differentiators and Integrators

Page 31: Module 2 handouts part 1

Introduce Differentiators and Integrators Demonstrate the performance of both circuits on an

oscilloscope

Lesson Objectives

31

Page 32: Module 2 handouts part 1

Differentiator Circuit

dtdVRCV in

o −=

+

-

vin

vo

R

Cv-

v+

cc V

dtdV

Ci=

32

Page 33: Module 2 handouts part 1

Differentiator Circuit

Derivation:1. KVL: Vin = Vc + Ri + Vo

2. Vin = Vc

3. Vo = -Ri = -RC(dVin / dt)

dtdVRCV in

o −=

+

-

vin

vo

R

Cv-

v+

33

Page 34: Module 2 handouts part 1

Differentiator Example

+

-

vin

vo

1000Ω

1µFv-

v+

vin v+

vo+VS= 15v

-VS = -15v

-VS

v-

+VS

34

Page 35: Module 2 handouts part 1

Results

dtdVRCV in

o −=

35

Page 36: Module 2 handouts part 1

Integrator Circuit

dtVRC

Vt

ino ∫−

=0

1

cc V

dtdV

Ci= ∫=t

c idtC

V0

1

+

-

vin

voR

v-

v+

C

36

Page 37: Module 2 handouts part 1

Integrator Circuit

Derivation:For t<0: Vin = iR and Vo = 0For t>0: Vin = iR i = Vin/RVin = iR + Vc + Vo

Vo = -Vc = -1/C ∫t Vin/R dt0

dtVRC

Vt

ino ∫−

=0

1

cc V

dtdV

Ci= ∫=t

c idtC

V0

1

+

-

vin

voR

v-

v+

C

37

Page 38: Module 2 handouts part 1

Integrator Examplevin v+

vo

+VS= 15v

-VS = -15v

-VSv-

+VS

+

-

vin

vo1000Ω

v-

v+

1µF

38

Page 39: Module 2 handouts part 1

Results

dtVRC

Vt

ino ∫−

=0

1

39

Page 40: Module 2 handouts part 1

Summary

Differentiator and Integrator Op Amp circuits examined

40

Page 41: Module 2 handouts part 1

Dr. Bonnie H. FerriProfessor and Associate ChairSchool of Electrical and Computer Engineering

School of Electrical and Computer Engineering

Active Filters

Introduce active filters and show different types of filters

Page 42: Module 2 handouts part 1

Introduce active filter circuits

Lesson Objectives

42

Page 43: Module 2 handouts part 1

Analog Filters

Analog FilterVin Vout

0 0.05 0.1 0.15 0.2 0.25-2

-1

0

1

2

Time (sec)

v(t)

0 0.05 0.1 0.15 0.2 0.25-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

v(t)

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

ω

Mag

nitu

de

H(ω)

|H(ω)|

ω (rad/sec)43

Page 44: Module 2 handouts part 1

Quiz

Vin = 1 + cos(10(2πt)) + cos(100(2πt)) Vout = 0.45cos(10(2πt)+θ1) + 0.97cos(100(2πt) +θ2)

44

Page 45: Module 2 handouts part 1

Summary of RC and RLC (Passive) Filters

vinR +

-voC

vin

R +

-vo

CL

vin R+

-vo

C

ω

Mag

nitu

de (d

B)

Bode Plots

ω

Mag

nitu

de (d

B)

ω

Mag

nitu

de (d

B)

45

Page 46: Module 2 handouts part 1

Depletes power

No isolation

Limitations of RLC Passive Filters

Analog FilterVin Vo

vinR +

-voC

46

Page 47: Module 2 handouts part 1

– has its own power supply Most common active filters are made from op amps Provide isolation

Active Filters

Op Amp CircuitVin Vout

47

Page 48: Module 2 handouts part 1

An is a circuit that has a specific shaped frequency response

A is made of op amps and has its own power supply. Advantages over RLC passive filters: Provides isolation (cascade filters) Boosts the power Can provide sharper roll-off

Summary

48

Page 49: Module 2 handouts part 1

Derivation: Vin = iZ1

Vo = -iZf = -(Zf/Z1)Vin

Impedance Gain

inin

Fo V

ZZV −

=

49

Page 50: Module 2 handouts part 1

Dr. Bonnie H. FerriProfessor and Associate ChairSchool of Electrical and Computer Engineering

School of Electrical and Computer Engineering

First-OrderLowpass Filters

Introduce lowpass filters

Page 51: Module 2 handouts part 1

Introduce active lowpass filters

Lesson Objectives

51

Page 52: Module 2 handouts part 1

Lowpass Filters

ω

Linear Plot

Mag

nitu

de

KDC

ωB

0.707KDC ω

Bode Plot

Mag

nitu

de (d

B)

20log10(KDC)3dB

Lowpass filters pass low frequency components and attenuate high frequency components

Transfer Function H(ω)

52

Page 53: Module 2 handouts part 1

First-Order Filter

Bandwidth, ωB = 1/τDC Gain = H(0) = KDC

ω

Linear Plot

Mag

nitu

de

KDC

ωB

0.707KDC

0

1j1KH DC +ωτ

=ω)(

53

Page 54: Module 2 handouts part 1

From Passive to Active Lowpass Filters

CircuitVin VoVin Vo

RC

Vo

RC

+-vin

Vin

RC

+-

vo

54

Page 55: Module 2 handouts part 1

First-Order Inverting Lowpass Filter

+

- voR1

C

Rf

vin

inf1

fo V

1CjR1

RRV

+ω−=

55

Page 56: Module 2 handouts part 1

Frequency Characteristics of LP Filter

ω

|H(ω)|Rf/R1

.707 Rf/R1

ωb

180°90°

H(ω)

ω1

f

RRGainDC −=

)()(

1CjR1

RRH

f1

f

+ω−=ω

1)ωCR(

1RR)|ω(H|

2ff

f

1 +=

)ωCRarctan(180)ω(H ff−=∠

fb CR

1ω,Bandwidthf

=

56

Page 57: Module 2 handouts part 1

Derivation: Lowpass Filter

+

- voZ1vin

Zf

+

- voR1

C

Rf

vin

57

Page 58: Module 2 handouts part 1

Design an inverting lowpass filter to have a DC gain of -2 and a bandwidth of 500 rad/s:

Example

+

- voR1

C

Rf

vin

1CjR1

RRH

f1

f

+ω−=ω)(

58

Page 59: Module 2 handouts part 1

A passes low frequency signals and attenuates high frequency signals

Three first-order lowpass configurations: Noninverting, isolation at the input

Noninverting, isolation at the output

Inverting, isolation at input and output

Summary

Vo

RC

+-vin

Vin

RC

+-

vo

+

- voR1

C

Rf

vin

59

Page 60: Module 2 handouts part 1

Dr. Bonnie H. FerriProfessor and Associate ChairSchool of Electrical and Computer Engineering

School of Electrical and Computer Engineering

First-OrderHighpass Filters

Introduce highpass filters

Page 61: Module 2 handouts part 1

Introduce active highpass filters

Lesson Objectives

61

Page 62: Module 2 handouts part 1

Passes high frequency components and attenuates low frequency components

Highpass Filter

Linear Plot

ω

Mag

nitu

de

62

Page 63: Module 2 handouts part 1

First-Order Filter

Corner Frequency, ωc = 1/τPassband Gain= KPB = K/τ

Linear Plot

1jKjH+ωτω

=ω)(

ω

Mag

nitu

de

KPB

ωc

0.707KPB

0

63

Page 64: Module 2 handouts part 1

Inverting Highpass Filter Configuration

in1

fo V

1CjRCjRV

)( +ωω−

=

+

- vo

R1C

Rf

vin

+

- voZ1vin

Zf

64

Page 65: Module 2 handouts part 1

Frequency Characteristics of HP Filter

CR1FreqCorner1

c =ω.,1

f

RRGainPassband −=∞→ω )(

)arctan()( ω−°−=ω∠ CR90H 1

)()(

1CjRCjRH

1

f

+ωω−

1CR

CRH2

1

f

ω=ω

)(|)(|

|H(ω)|Rf/R1

ωc = 1/R1C ω

0.707KPB

0

-90°

H(ω)ω0°

65

Page 66: Module 2 handouts part 1

Design a highpass filter to have a passbandgain of 2 and a corner frequency of 1k rad/s:

Example

+

- vo

R1C

Rf

vin

66

Page 67: Module 2 handouts part 1

A passes high frequency components in signals and attenuates low frequency components

First-order highpass filter

Design based on Corner frequency of the passband, ωc Passband gain, KPB

Summary

+

- vo

R1C

Rf

vin

)()(

1CjRCjRH

1

f

+ωω−

67