Top Banner
Models of synaptic transmission part II Dmitry Bibichkov Max Planck Institute for Biophysical Chemistry Göttingen, Germany Bernstein Center for Computational Neuroscience Göttingen , Germany
30

Models of Synaptic Transmission (2)

Aug 21, 2015

Download

Education

SSA KPI
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Models of Synaptic Transmission (2)

Models of synaptic transmissionpart II

Dmitry Bibichkov Max Planck Institute for Biophysical Chemistry Göttingen, Germany

Bernstein Center for Computational Neuroscience Göttingen , Germany

Page 2: Models of Synaptic Transmission (2)

Chemical synapses

Excitatory neurons• NMDA voltage-dependent Mg2+- block (removed at V > - 50 mV)

[Jahr and Stevens 1990]

ms3=↑τms40=↓τ( ) )(])[,()( 2// tMgVgeegt tt

NMDA Θ⋅⋅−= +∞

−− ↑↓ ττα

10.08.2010 D. Bibichkov, AACIMP-2010

Page 3: Models of Synaptic Transmission (2)

Chemical synapses

Excitatory neurons• NMDA voltage-dependent Mg2+- block (removed at V > - 50 mV)

( ) )(])[,()( 2// tMgVgeegt ttNMDA Θ⋅⋅−= +

∞−− ↑↓ ττα

12

)][1( −−+

∞ += VeMgg ε

β

[Gabbiani et.al 1994]

-8 0 -6 0 -4 0 -20 0 2 0 4 0 600

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

V

g ∞

0 .0 1

0 .1 1

1 0

ms3=↑τms40=↓τ

10.08.2010 D. Bibichkov, AACIMP-2010

Page 4: Models of Synaptic Transmission (2)

Activity-dependent recovery

Responses to regular spike trains at the calyx of Held. Fit each frequency separately.

0 5 10 15 20 250.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s p ike num b e r

norm

aliz

ed c

urre

nt

200Hz100Hz

50Hz

20Hz

10Hz 5Hz

2Hz

1Hz

0.5Hz0.2Hz

10.08.2010 D. Bibichkov, AACIMP-2010

Page 5: Models of Synaptic Transmission (2)

Activity-dependent recovery

0 . 2 0 . 5 1 2 5 1 0 2 0 5 0 1 0 0 2 0 00

1

2

3

4

5

6

7

8

i n p u t f r e q u e n c y f , H z

reco

very

rat

e k

, H

z

Effective recovery rate:mean recovery rate over an ISI

Calcium accumulates during the trains of action potentials and leads to increased recovery rates during high-frequency stimulation

10.08.2010 D. Bibichkov, AACIMP-2010

Page 6: Models of Synaptic Transmission (2)

Activity-dependent recovery

Calyx of Held[Weis et.al. 1999]

Activity-dependent recovery increases the range of characteristic frequencies towards the maximal recovery rate

climbing fiber to Purkinje cell synapse[Dittmann and Regehr 1998]

activity dependenceno activity dependence

10.08.2010 D. Bibichkov, AACIMP-2010

Page 7: Models of Synaptic Transmission (2)

Entropy of stochastic signal S: amount of variability in the stimulus statistics

∑−=s

sPsPSH )(log)()( 2

Noise entropy of response R: average response variability

∑∑ −==rss

noise srPsrPsPsRHsPRH,

2 )|(log)|()()|()()(

Mutual information: reduction of uncertainty about the signal due to the measurement of the response

)()(),( RHSHSRI noise−=

synapseS R

Conditional entropy of response R: variability of the response to a given stimulus s

∑−=r

srPsrPsRH )|(log)|()|( 2

(ISI) (PSC)

Information Theory

10.08.2010 D. Bibichkov, AACIMP-2010

Page 8: Models of Synaptic Transmission (2)

• Optimal inputs maximizing response entropy and mutual information for estimated synaptic parameters ? • Optimal synaptic parameters for given input statistics ?

Effects of synaptic dynamics on information transfer

10.08.2010 D. Bibichkov, AACIMP-2010

Page 9: Models of Synaptic Transmission (2)

ISI PSC

no depression strongdepression

‘optimal’depression

Transmission is optimal when the input statistics spans the dynamic range of possible responses.

synapseEffects of synaptic dynamics on information transfer

10.08.2010 D. Bibichkov, AACIMP-2010

Page 10: Models of Synaptic Transmission (2)

Output entropy decreases with frequency

Deterministic model: )(),( RHRSI =

10.08.2010 D. Bibichkov, AACIMP-2010

Page 11: Models of Synaptic Transmission (2)

Output entropy decreases with frequency

Deterministic model: mutual information is equal to the differential entropy of responses to Poisson spike trains :

0 . 1 1 1 0 1 0 0

- 1

- 2

- 4

f , H z

outp

ut e

ntro

py

F D R ( t h e o r )

τ = 4 . 7 ( t h e o r ) F D R ( s im )

τ = 4 . 7 ( s i m )

10.08.2010 D. Bibichkov, AACIMP-2010

Page 12: Models of Synaptic Transmission (2)

Effect of facilitation on information transmission

Facilitation sets an optimal range of frequency for information transmission.

[Fuhrmann et al 2002]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 13: Models of Synaptic Transmission (2)

Stochastic model of release

• Number of available vesicles before spike: Nx

• Stochastic release of n ~ B(Nx,p) (binomial distribution)

• Depletion of releasable pool:

• Stochastic postsynaptic response E ~ N(nq, nσ2)

• Stochastic recovery of vesicles according to a Poisson process with rate k

Nnxx /−→Nxpn

p).(.pnNx

n nNxn

=

= −1) Pr( vesiclesreleased

10.08.2010 D. Bibichkov, AACIMP-2010

Page 14: Models of Synaptic Transmission (2)

Activity-dependent recovery extends the frequency range of effective information transfer

Stochastic model:

1 / 8 1 8 3 2 1 2 8 5 1 2

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

0 . 5

0 . 5 5

f, Hz

I(IS

I,PS

R)

S t o c h a s t i c , τ= 4 . 7 2 s

S t o c h a s t i c , τe f f g l o b a l

S t o c h a s t i c , τe f f ( i s i )

[J. Bao, DB, EN]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 15: Models of Synaptic Transmission (2)

Effect of facilitation on information transmission

Facilitation increases information transmission for a range of frequencies compared to synapses with pure depression.

[Jin Bao]D

D+F

10.08.2010 D. Bibichkov, AACIMP-2010

Page 16: Models of Synaptic Transmission (2)

Optimal recovery rate

0 . 1 1 8 1 2 80

2

4

6

8

1 0

1 2

input frequency (Hz)

τr (

s)

τe f fr

( C a l y x )

o p t i m a l τ

τo p t ∼ r - 1 . 6

6.0−∝ foptτ

The parameters of the Calyx of Held synapse which fit the responses to the regular trains are close to the optimal in terms of transmission of information.

10.08.2010 D. Bibichkov, AACIMP-2010

Page 17: Models of Synaptic Transmission (2)

Network effects

1. Generation of population spikes in network with recurrent excitation and depressing synapses [Loebel, Tsodyks 2002]

2. Generation of sustained activity by calcium-dependent facilitation: short-term memory model [Mongillo et. al 2008]

3. Self-organized criticality in networks with synaptic depression [Levina et.al 2007]

4. Capacity modulation and sequence storage in associative memory networks [Bibitchkov et.al 2002]

5. Stabilization of activity, oscillations and pattern switching in recurrent networks with "ring-like" structure [van Rossum 2009]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 18: Models of Synaptic Transmission (2)

Population spikes

[Loebel, Tsodyks 2002]

10.08.2010 D. Bibichkov, AACIMP-2010

fully connected recurrent network

Rate models

Integrate and fire neurons

Page 19: Models of Synaptic Transmission (2)

Population spikes

[Loebel, Tsodyks 2002]

10.08.2010 D. Bibichkov, AACIMP-2010

Dependinc on connection strength or ext. input strength the network can be asynchronous or produce synchronous activity patterns

Page 20: Models of Synaptic Transmission (2)

Population spikes

[Loebel, Tsodyks 2002]

10.08.2010 D. Bibichkov, AACIMP-2010

Response to a tonic input elevation

Page 21: Models of Synaptic Transmission (2)

Population spikes

[Loebel, Tsodyks 2002]

10.08.2010 D. Bibichkov, AACIMP-2010

Responses tosharp stimuli ofdifferentfrequencies

Page 22: Models of Synaptic Transmission (2)

Short-term memory model

[Mongillo et. al 2008]

10.08.2010 D. Bibichkov, AACIMP-2010

Facilitating synapse

DF ττ > >

Page 23: Models of Synaptic Transmission (2)

Sustained activity: short-term memory model

p

p

p

[Mongillo et. al 2008]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 24: Models of Synaptic Transmission (2)

Sustained activity: short-term memory model

p

p

p

p

Robustness to noise and

two-term memory

[Mongillo et. al 2008]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 25: Models of Synaptic Transmission (2)

Self-organized criticality in neuronal cultures

[Beggs and Plenz 2003, 2004]

• Power-law distribution of avalanche sizes

• Exponent of -3/2

•Dynamics is stable over many hours of recordings

10.08.2010 D. Bibichkov, AACIMP-2010

Page 26: Models of Synaptic Transmission (2)

Self-organized ctiticality

Static synapses Depressing synapses

[Levina et. al 2007]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 27: Models of Synaptic Transmission (2)

Attractor networks with synaptic depression

[Bibitchkov et.al 2002]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 28: Models of Synaptic Transmission (2)

Ring model with synaptic depression

[York & van Rossum 2009]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 29: Models of Synaptic Transmission (2)

Ring model with synaptic depression

[York & van Rossum 2009]

10.08.2010 D. Bibichkov, AACIMP-2010

Page 30: Models of Synaptic Transmission (2)

Acknowledgements

J.Michael Herrmann (University of Edinburgh)Misha Tsodyks (Weizmann Institute)Barak Blumenfeld (Weizmann Institute)Erwin Neher (MPI for Biophysical Chemistry, Göttingen)Holger Taschenberger (MPI for Biophysical Chemistry, Göttingen)Jin Bao (MPI for Biophysical Chemistry, Göttingen)I-Wen Chen (MPI for Biophysical Chemistry, Göttingen*)Kun-Han Lim (MPI for Biophysical Chemistry, Göttingen)Anna Levina (MPI for Dynamics and Self-Organization Göttingen)Mark van Rossum (University of Edinburgh)

ORGANIZERS!!!!

10.08.2010 D. Bibichkov, AACIMP-2010