Top Banner
Bursting Nucleation Mod´ elisation probabiliste en biologie cellulaire et mol´ eculaire Th` ese sous la direction de M. Adimy, M.C. Mackey & L. Pujo-Menjouet Romain Yvinec Institut Camille Jordan - Universit´ e Claude Bernard Lyon 1 Vendredi 05 octobre 2012 0/40
61

Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Apr 01, 2019

Download

Documents

doandan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation

Modelisation probabiliste en biologie cellulaire etmoleculaire

These sous la direction de

M. Adimy, M.C. Mackey & L. Pujo-Menjouet

Romain Yvinec

Institut Camille Jordan - Universite Claude Bernard Lyon 1

Vendredi 05 octobre 2012

0/40

Page 2: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 3: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 4: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Central Dogma

◮ Expression of a gene through transcription/translationprocesses.

◮ Non-linear Feedback regulation.

1/40

Page 5: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

◮ Bifurcation analysis in Ordinary Differential Equation.

◮ Application to synthetic biology.

[Goodwin, 1965],[Hasty et al., 2001].

2/40

Page 6: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Stochasticity in molecular biology

[Eldar and Elowitz, 2010].

3/40

Page 7: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Much more accurate measurements

◮ Bifurcation can be studied on probability distributions.

[Song et al., 2010].

4/40

Page 8: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Much more accurate measurements

◮ Trajectories can be analyzed on single cells.

[Yu et al., 2006].

5/40

Page 9: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

New Central dogma

◮ Take into account gene state switching. Interpretation asstochastic processes.

[Berg, 1978],[Peccoud and Ycart, 1995],[Kepler and Elston, 2001],[Paulsson, 2005],[Lipniacki et al., 2006],[Paszek, 2007],

[Shahrezaei and Swain, 2008].

The bursting phenomena

Question 1) When does the stochastic model predict burstphenomenon ?Question 2) What can we say in such cases ?

6/40

Page 10: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 11: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

We consider the following 2d stochastic kinetic chemical reactionmodel (X=’mRNA’, Y=’Protein’)

∅λ1(X ,Y )−−−−−→ X , Production of X at rate λ1(X ,Y )

XNγ1(X ,Y )−−−−−−→ ∅, Destruction of X at rate Nγ1(X ,Y )

∅Nλ2(X ,Y )−−−−−−→ Y , Production of Y at rate Nλ2(X ,Y )

Yγ2(X ,Y )−−−−−→ ∅, Destruction of Y at rate γ2(X ,Y )

with γ1(0,Y ) = γ2(X , 0) = 0 to ensure non-negativity.

BN f (x , y) =λ1(x , y)[

f (x + 1, y)− f (x , y)]

+ Nγ1(x , y)[

f (x − 1, y) − f (x , y)]

+ Nλ2(x , y)[

f (x , y + 1)− f (x , y)]

+ γ2(x , y)[

f (x , y − 1)− f (x , y)]

.

7/40

Page 12: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Theorem (R.Y.)If

◮ The degradation function on X satisfies

infx≥1,y≥0

γ1(x , y) = γ > 0.

◮ The production rate of Y satisfies λ2(0, y) = 0, for all y ≥ 0.

◮ λ1 and λ2 are linearly bounded by x + y , and either λ1 or λ2 isbounded.

Then, for all T > 0, (XN(t),Y N(t))t≥0 converges in L1(0,T ) to(0,Y (t)), whose generator is given by

B∞ϕ(y) = λ1(0, y)( ∫ ∞

0

Pt(γ1(1, · )ϕ(· ))(y)dt − ϕ(y))

+ γ2(0, y)[

ϕ(y − 1)− ϕ(y)]

,

Ptg(y) = E[g(Z (t, y)e−

∫t

0γ1(1,Z (s,y))ds

],

Ag(z) = λ2(1, z)(g(z + 1)− g(z)

).

8/40

Page 13: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

9/40

Page 14: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

◮ We identify the limiting martingale problem

9/40

Page 15: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

◮ We identify the limiting martingale problem

λ2(x , y)[

f (x , y+1)−f (x , y)]

+γ1(x , y)[

f (x−1, y)−f (x , y)]

= 0.9/40

Page 16: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Sketch of the proof

◮ We first show tightness and convergence of X based on

NγE[∫ t

01{XN(s)≥1}ds

]≤ E

[XN(0)

]+E

[∫ t

0λ1(X

N(s),Y N(s))ds].

◮ We identify the limiting martingale problem

Axg(y) = λ2(x , y)[

g(y + 1)− g(y)]

,

for any x ≥ 1. and we introduce the semigroup Pxt

Pxt g(y) = E

[g(Z x ,y

t )e−∫ t0 γ1(x ,Z

x,ys )ds

].

Now for any bounded function g , define f (0, y) = g(y) and

f (x , y) =

∫ ∞

0Pxt (γ1(x , .)f (x − 1, .))(y)dt.

Then

λ2(x , y)[

f (x , y+1)−f (x , y)]

+γ1(x , y)[

f (x−1, y)−f (x , y)]

= 0.9/40

Page 17: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

◮ A similar proof for a (continuous state) PDMP model, ofgenerator

Bf (x , y) =− Nγ1(x , y)∂f

∂x+ (Nλ2(x , y)− γ2(x , y))

∂f

∂y

+ λ1(x , y)

∫ ∞

0(f (x + z , y)− f (x , y))h(z)dz .

◮ These proofs are based on a simple idea([Debussche et al., 2011],[Kang and Kurtz, 2011]).

◮ Other proof : reduction on the Fokker-Planck equation.

◮ Different scalings lead to different models.

10/40

Page 18: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 19: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

We look at the stochastic process

dx = −γ(x)dt + dN(λ(x), h(x , ·)),

whose generator is

Af = −γ(x)f ′(x) + λ(x)( ∫ ∞

0f (x + y)h(x , y)dy − f (x)

)

,

and evolution equation on densities

∂u(t, x)

∂t=

∂γ(x)u(t, x)

∂x−λ(x)u(t, x)+

∫ x

0u(t, y)λ(y)h(y , x−y)dy ,

and with

∫ ∞

0h(x , y)dy = 1, for all x .

11/40

Page 20: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Probabilistic techniques

If jumps are independent of positions, i.e. h(x , y) = h(y), we have :

Proposition

Suppose x 7→ λ(x) is continuous on (0,∞), λ(0) > 0, γ(x) = γx,E[h]< ∞, and

limx→∞

λ(x)E[h]

γx< 1,

then there exist β < 1, B < ∞ and π (invariant measure) such that

‖P(t, x , ·) − π‖V ≤ BV (x)βt , x ∈ E , t > 0,

where ‖µ‖f = sup|g |≤f | µ(g) | and V (x) = x + 1.

12/40

Page 21: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Probabilistic techniques

If jumps are independent of positions, i.e. h(x , y) = h(y), we have :

Proposition

Suppose x 7→ λ(x) is continuous on (0,∞), λ(0) > 0, γ(x) = γx,E[h]< ∞, and

limx→∞

λ(x)E[h]

γx< 1,

then there exist β < 1, B < ∞ and π (invariant measure) such that

‖P(t, x , ·) − π‖V ≤ BV (x)βt , x ∈ E , t > 0,

where ‖µ‖f = sup|g |≤f | µ(g) | and V (x) = x + 1.

◮ Ax = −γx + λ(x)( ∫∞

0 (x + y)h(y)dy − x)

= −(1−λ(x)E

[h

]

γx)γx

12/40

Page 22: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Semigroup techniques

∂u(t, x)

∂t︸ ︷︷ ︸

dudt

=∂γ(x)u(t, x)

∂x− λ(x)u(t, x)

︸ ︷︷ ︸

Au=(A0−λ)u

+

∫ x

0u(t, y)λ(y)h(y , x − y)dy

︸ ︷︷ ︸

Bu=J(λu)

(A,D(A)) ⇒ S(t)u(x) = P0(t)u(x)e−

∫t

0λ(φr x)dr

Let C = A+ B. Denote the resolvent RSs u =

∫∞0 e−stS(t)udt.

13/40

Page 23: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Semigroup techniques

∂u(t, x)

∂t︸ ︷︷ ︸

dudt

=∂γ(x)u(t, x)

∂x− λ(x)u(t, x)

︸ ︷︷ ︸

Au=(A0−λ)u

+

∫ x

0u(t, y)λ(y)h(y , x − y)dy

︸ ︷︷ ︸

Bu=J(λu)

(A,D(A)) ⇒ S(t)u(x) = P0(t)u(x)e−

∫t

0λ(φr x)dr

Let C = A+ B. Denote the resolvent RSs u =

∫∞0 e−stS(t)udt.

Theorem ([Tyran-Kaminska, 2009])There is a minimal substochastic semigroup P generated by anextension of (C ,D(A)), and which resolvent is given by

RPs u = lim

n→∞

RSs

n∑

k=0

(J(λRSs ))

ku,

and if K = limσ→0 J(λRSσ ) has a unique invariant density, then so

does for P (and P is stochastic).

13/40

Page 24: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

◮ Under good conditions, K is the transition operator for thediscrete Markov chain“post-jump”, and has for kernel

k(x , y) =

∫ x

0

1{(0,y)}(z)h(z , y − z)λ(z)

γ(z)eQ(x)−Q(z)dz ,

Q(x) =

∫ x

x

λ(z)

γ(z)dz .

◮ Modulo integrability conditions, invariant density v∗ for K andinvariant density u∗ for P are related through

γ(x)u∗(x) =

∫ x

0

H(z , x − z)λ(z)u∗(z)dz , H(z , x) =

∫ ∞

x

h(z , y)dy ,

v∗(x) =

∫ x

0

h(z , x − z)λ(z)u∗(z)dz ,

u∗(x) =1

γ(x)

∫ ∞

x

eQ(y)−Q(x)v∗(y)dy ,

v∗(x) =

∫ x

0

h(z , x − z)λ(z)

γ(z)e−Q(z)

∫ ∞

z

v∗(y)eQ(y)dydz .

14/40

Page 25: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Condition for ergodicity in the exponential case

If jumps are independent of positions, i.e. h(x , y) = h(y) andexponentially distributed, of mean b, i.e. h(y) = 1

be−y/b, then

Theorem (M. Tyran-Kaminska, M. Mackey, R.Y.)

Under technical assumptions (for integrability), and if

limx→∞

λ(x)

γ(x)<

1

b,

Q(0) :=

∫ x

0

λ(z)

γ(z)dz = ∞,

then P is ergodic with unique invariant density

u∗(x) =1

cγ(x)e−x/b−Q(x).

15/40

Page 26: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Bifurcation

This analytical approach allows us to deduce that the number ofmodes of the stationary state is linked to the solution of

λ(x) =γ(x)

b+ γ′(x).

16/40

Page 27: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Further results (not developed here)

◮ This can be used to find λ(x) and b from observations of(u∗, γ).

◮ The convergence rate can be estimated from couplingtechniques.

17/40

Page 28: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Experiments Reduction Limiting model

Further results (not developed here)

◮ This can be used to find λ(x) and b from observations of(u∗, γ).

◮ The convergence rate can be estimated from couplingtechniques.

Perspectives

◮ Other jump size kernel h.

◮ Waiting time properties.

◮ Switch and bursting model.

◮ Include cell division and study population dynamics.

◮ Characterize oscillations in two-dimensional model.

17/40

Page 29: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 30: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Prion Diseases

◮ Creutzfeldt-Jakob : Firsthuman prion diseasedescribed (1929).

◮ Mad cow disease, Scrapie.

◮ Kuru (New Guinea)

18/40

Page 31: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Prion Diseases

Epidemiology

◮ All prion diseases aretransmissible, i.e. infectious.

◮ Some prion diseases aresporadic, they appearspontaneously, withoutcause.

◮ Some prion diseases aregenetic.

Symptoms

◮ Affect the structure of thebrain ;

◮ Convulsion, Dementia, Lossof balance ;

◮ Always fatal.

19/40

Page 32: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 33: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

What is prion ?

A protein

◮ A protein called PRION isthe cause of this disease

◮ It is neither a bacteria, noran viroid like agent !

◮ Stanley Prusiner wasawarded Nobel price inPhysiology and Medicine in1997 for his discovery.

Histopathology

◮ Accumulation of a protein inthe amyloid form.

◮ Spongiosis.

20/40

Page 34: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation-Polymerization

Conformation change

Normal ⇔ Misfolded

Lansbury’s model

[Lansbury and Caughey, 1995].

21/40

Page 35: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 36: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

◮ In vitro spontaneous polymerization experiments.

◮ Time series of polymer mass.

22/40

Page 37: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Statistics of nucleation time

◮ Relation between the nucleation time and the initialconcentration in log plots.

◮ Full distribution of the nucleation time.

23/40

Page 38: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Questions

◮ Can a probabilistic model reproduce the observed variability ?

◮ Can it help to identify parameters ?

◮ Can a model include different strain structures ?

24/40

Page 39: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Outline

Bursting phenomenon in gene expression modelsMolecular biologyTranscriptional/Translational BurstingLimiting model

Nucleation in Prion Polymerization ExperimentsPrion diseasesPrusiner-Lansbury modelIn vitro experimentsStudy of the nucleation time

Page 40: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Reversible aggregation model

Ci + C1

p−⇀↽−qCi+1

where

Ci = ♯{molecules of size i}.

The nucleation time is given by a waiting time problem,

Tlag = inf{t ≥ 0 : CN(t) = 1},

with initial condition C1(0) = M, Ci(0) = 0, i ≥ 2.N is the nucleus size.

25/40

Page 41: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Constant monomer formulation

If we supposeC1(t) ≡ M

We can solve exactly the probability distributions (Poisson) and wededuce

S(t) := P{CN(s) = 0, s ≤ t

}= P

{CN(t) = 0

}= e−cN (t),

where (ci )i=2..N are solution of the linear deterministic system (cnis absorbing) :

c2 = pM(12M − c2)− q(c2 − c3),ci = pM(ci−1 − ci )− q(ci − ci+1), 3 ≤ i ≤ N − 2,cN−1 = pM(cN−2 − cN−1)− qcN−1,

cN = pMcN−1.

26/40

Page 42: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution (C1(t) ≡ M)

M → ∞ : Weibull MN

2(N−2)!tN−2 exp(− MN

2(N−1)! tN−1)

q → ∞ : exponential MN

2qN−2 exp(−MN

2qN−2 t)

N = 6,M = 1000,

q =

102,

103,

4.103,

104.

27/40

Page 43: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Mean nucleation time versus initial monomer quantity inlog scale (C1(t) ≡ M)

28/40

Page 44: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in log scale (C1(t) ≡ M)

M → ∞ : Weibull MN

2(N−2)!tN−2 exp(− MN

2(N−1)! tN−1)

q → ∞ : exponential MN

2qN−2 exp(−MN

2qN−2 t)

N = 6,M = 1000,

q =

102,

103,

4.103,

104.

29/40

Page 45: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Mass conservative formulation

We now supposeN∑

i=1

iCi(t) ≡ M.

Kolmogorov backward equations ⇒ Linear system on

S(t, {C 0}) = P{CN(t) = 0 | Ci(0) = C 0

i

}

Problem : Dimension of the system

♯{configuration {C 0},N∑

i=1

iC 0i = M,C 0

N = 0} ≈MN

N!

30/40

Page 46: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

In general, we look for approximate solution for extreme parametervalues : q ≫ M and q ≪ M. We use

◮ known deterministic solution ;

◮ time scale separation ;

◮ scaling laws ;

◮ phase space dimension reduction ;

◮ linear model ;

◮ numerical simulation.

31/40

Page 47: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Trajectories in the unfavorable case q ≫ M

Pre-equilibrium hypothesis (ex : M = 200,N = 8,q = 1000).

32/40

Page 48: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in the unfavorable caseq ≫ M : exponential law

Tlag ∼ exponential law, of parameter

< C1CN−1 >t→∞ (M) ≈ c1(t → ∞)cN−1(t → ∞) ≈MN

2qN−2

33/40

Page 49: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Trajectories in the favorable case M >> q and N large

“Metastable“ trajectory (ex :M = 30000,N = 10,q = 1).

34/40

Page 50: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Trajectories in the favorable case M >> q and N large

“Metastable“ trajectory. Known phenomenon for the deterministicmodel ([Penrose, 1989],[Wattis, 2006])

1. irreversibleaggregation(up to c∗i )

2. slow ”diffusion”with constantmonomerC1(t) ≡ c∗1

3. convergence toequilibrium

35/40

Page 51: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in the favorable case M >> q

and N large, c∗N < 1 : bimodal distribution

c∗N < 1 : Linear model with C1 ≡ c∗1 , Ci (0) = c∗i (solid line).

36/40

Page 52: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Nucleation time distribution in the favorable case M >> q

and N small, c∗N > 1 : Weibull law

c∗N > 1 : Linear model with C1 ≡ M, Weibull law (dashed line).

37/40

Page 53: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Mean nucleation time versus initial monomer quantity inlog scale : 2 or 3 phases according nucleus size N

1. exponential

2. Linearmodel(startingfrom c∗i )

3. Weibull

38/40

Page 54: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Mean nucleation time versus initial monomer quantity inlog scale : 2 or 3 phases according nucleus size N

39/40

Page 55: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Conclusion/Perspectives

◮ Different behavior of the nucleation time

◮ Parameter Identifiability depending on parameter region

40/40

Page 56: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Conclusion/Perspectives

◮ Different behavior of the nucleation time

◮ Parameter Identifiability depending on parameter region

Perspectives

◮ Different nucleation regime ⇒ Different polymerization regime

◮ Possibility to take into account different polymer structures

◮ Study the nucleation time for size-dependent rates

40/40

Page 57: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Berg, O. G. (1978).A model for the statistical fluctuations of protein numbers in amicrobial population.J. Theor. Biol., 71(4) :587–603.

Debussche, A., Crudu, A., Muller, A., and Radulescu, O.(2011).Convergence of stochastic gene networks to hybrid piecewisedeterministic processes.Ann. Appl. Probab. (to appear).

Eldar, A. and Elowitz, M. B. (2010).Functional roles for noise in genetic circuits.Nature, 467(7312) :167–73.

Goodwin, B. C. (1965).Oscillatory behavior in enzymatic control processes.Adv. Enzyme. Regul., 3 :425–437.

Hasty, J., McMillen, D., Isaacs, F., and Collins, J. J. (2001).

40/40

Page 58: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Computational studies of gene regulatory networks : in numeromolecular biology.Nat. Rev. Genet., 2(4) :268–279.

Kang, H.-W. and Kurtz, T. G. (2011).Separation of time-scales and model reduction for stochasticreaction networks.Ann. Appl. Probab. (to appear).

Kepler, T. and Elston, T. (2001).Stochasticity in transcriptional regulation : Origins,consequences, and mathematical representations.Biophys. J., 81 :3116–3136.

Lansbury, P. J. and Caughey, B. (1995).The chemistry of scrapie infection : implications of the ’ice 9’metaphor.Chem. Biol., 2(2) :1–5.

40/40

Page 59: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Lipniacki, T., Paszek, P., Marciniak-Czochra, A., Brasier,A. R., and Kimmel, M. (2006).Transcriptional stochasticity in gene expression.J. Theor. Biol., 238(2) :348–367.

Paszek, P. (2007).Modeling stochasticity in gene regulation : characterization inthe terms of the underlying distribution function.B. Math. Biol., 69(5) :1567–601.

Paulsson, J. (2005).Models of stochastic gene expression.Phys. Life Rev., 2(2) :157–175.

Peccoud, J. and Ycart, B. (1995).Markovian modelling of Gene Product Synthesis.Theor. Popul. Biol., 48(2) :222–234.

Penrose, O. (1989).Metastables states for the becker-doring cluster equations.

40/40

Page 60: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

Commun. Math. Phys., 541 :515–541.

Shahrezaei, V. and Swain, P. (2008).Analytic distributions for stochastic gene expression.Proc. Natl. Acad. Sci., 105 :17256–17261.

Song, C., Phenix, H., Abedi, V., Scott, M., Ingalls, B. P.,Perkins, T. J., and Kaern, M. (2010).Estimating the Stochastic Bifurcation Structure of CellularNetworks.PLoS Comput. Biol., 6 :e1000699/1–11.

Tyran-Kaminska, M. (2009).Substochastic semigroups and densities of piecewisedeterministic markov processes.J. Math. Anal. Appl., 357(2) :385–402.

Wattis, J. A. D. (2006).

40/40

Page 61: Mod´elisation probabiliste en biologie cellulaire et mol ... fileBursting Nucleation Mod´elisation probabiliste en biologie cellulaire et mol´eculaire Th`ese sous la direction de

Bursting Nucleation Prion Model Experiments Nucleation time

An introduction to mathematical models ofcoagulation-fragmentation processes : a discrete deterministicmean-field approach.Physica D, 222(1-2) :1–20.

Yu, J., Xiao, J., Ren, X., Lao, K., and Xie, X. (2006).Probing gene expression in live cells, one protein molecule at atime.Science, 311 :1600–1603.

40/40