Top Banner
Modeling scalar fields consistent with positive mass Tetsuya Shiromizu Department of Physics, Kyoto University Yukawa Institute 7 th Feb. 2014 Nozawa and Shiromizu, Physical Review D89, 023011(2014) With Masato Nozawa(KEK)
27

Modeling scalar fields consistent with positive mass

Oct 27, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Modeling scalar fields consistent with positive mass

Modeling scalar fields

consistent with positive mass

Tetsuya ShiromizuDepartment of Physics, Kyoto University

Yukawa Institute 7th Feb. 2014

Nozawa and Shiromizu, Physical Review D89, 023011(2014)

With Masato Nozawa(KEK)

Page 2: Modeling scalar fields consistent with positive mass

Content

1. Introduction

2. Positive mass theorem

3. Einstein-scalar system

4. Future issues

Page 3: Modeling scalar fields consistent with positive mass

1. Introduction

Page 4: Modeling scalar fields consistent with positive mass

Positive mass theorem

~ Positive mass theorem

Schoen&Yau 1981, Witten 1981, Gibbons et al 1983,…

M ≧ 0

M =0 ⇔ Minkowski/anti-deSitter

for GR, SUGRA, regular spacetimes, energy condition, …

The existence of ground state

Page 5: Modeling scalar fields consistent with positive mass

Restriction on theories

Scalar potentials consistent with positive mass Boucher 1984, Townsend 1985

)()(2

1 2 URL

22

)(12)(

8)(

W

d

dWU

Cf) SUGRA ,W superpotential

Page 6: Modeling scalar fields consistent with positive mass

Summary of our work

matterLXKRgxdS ),(24

gX2

1

The cases consistent with positive mass are

(i)

(ii)

22/1 )(12)()(

24

WX

d

dWK

22

)(12)(

8)(

W

d

dWXUXK

actionNozawa & Shiromizu 2014

No cosmological solution

Canonical form with “superpotential”

・strong restriction

・classical stability is automatically guaranteed

Page 7: Modeling scalar fields consistent with positive mass

2. Positive mass theorem

Back to Witten 1981

Page 8: Modeling scalar fields consistent with positive mass

Positivity: essence

0 i

i

i

Si dSM

~

di

i )(

d 22||

dT 2

00

2 ||||~ 0

If the energy-momentum tensor satisfies the energy condition,

we can prove the positivity of mass.

spinor :

Page 9: Modeling scalar fields consistent with positive mass

Rigidity

0

0||||~ 2

00

2 dTM

0 abcdR

Minkowski spacetime

Page 10: Modeling scalar fields consistent with positive mass

Precisely

iN :

VGiN 2

0 i

i

duNdSN

2

1

vector tonormalunit directed future : u

0 i

dVGTdSNGM i

0

2 8||22

18 0

iV :

≧0 (energy condition)

Page 11: Modeling scalar fields consistent with positive mass

3. Einstein-scalar system

Nozawa & Shiromizu 2014

Page 12: Modeling scalar fields consistent with positive mass

Model

matterLXKRgxdS 2),(24

gX2

1

action

KgKT X )(

)()( matterTTG

does not satisfy the (dominant) energy condition in general

Page 13: Modeling scalar fields consistent with positive mass

Mass expression

0ˆ ,)(ˆ i iA

RgRG 2

1:

FiS :

)(2 ][][ AAAF

iV

uSVGidGM ˆˆ28

Page 14: Modeling scalar fields consistent with positive mass

Required condition

)(ˆˆ)(

)(2

ˆˆ2ˆ

AAiAAi

FFi

VGiN

)(2 ][][ AAAF

AA

We imposed

Otherwise, non-controllable terms appear

Page 15: Modeling scalar fields consistent with positive mass

Strategy

spinor: 0ˆ ii

i

SidSM

ˆ~

di

i )ˆ(

dSTT matter 0)(

0000

2|ˆ|

KgKT X )(

2||

Einstein eq.

Look for the theory for scalar field to have the form for

Page 16: Modeling scalar fields consistent with positive mass

Look at detail more

)(WA

22

22

2

)(12)(

8

W

d

dWfXfK

fKX

d

dWXfXf

)(),(4),(

2

1: 1

)(ˆ A

uSVGidGM ˆˆ28

222222

2

12)(8)(2

1

124

WWfffVi

WVWi

FiS

)(2 ][][ AAAF

VTiS )(

If

Page 17: Modeling scalar fields consistent with positive mass

Then

22

22

2

)(12)(

8

W

d

dWfXfK

fKX

d

dWXfXf

)(),(4),(

2

1: 1

2

2

)(128

WK

WKXK

X

X

088

2

22

X

XX

X

XXK

WXK

K

WKXK

0)( XXKi

08

)(2

2

XK

WXii

22

)(12)(

8)(

W

d

dWXUXK

22/1 )(12)()(

24

WX

d

dWK

Page 18: Modeling scalar fields consistent with positive mass

Case (ii)

22/1 )(12)()(

24

WX

d

dWK

For homogeneous-isotropic spacetimes,

)(t 02/2 X

not work does (ii) case the,)( offactor the toDue 2/1X

Page 19: Modeling scalar fields consistent with positive mass

Summary

matterLXKRgxdS ),(24

gX2

1

(i)

(ii)

22/1 )(12)()(

24

WX

d

dWK

22

)(12)(

8)(

W

d

dWXUXK

actionNozawa & Shiromizu 2014

No cosmological solution

Canonical form with “superpotential”

Page 20: Modeling scalar fields consistent with positive mass

4. Future issues

Page 21: Modeling scalar fields consistent with positive mass

Future issues

Extension to more general

cases/modified gravity?

AA

)(WA general enough?

Page 22: Modeling scalar fields consistent with positive mass
Page 23: Modeling scalar fields consistent with positive mass

Some basics

Page 24: Modeling scalar fields consistent with positive mass

Covariant derivative

ˆˆ

ˆˆ

4

1

ˆˆ

ˆˆ

4

1 ,

ˆˆ

ˆˆ

ˆˆ

ˆˆ

ˆˆ

4

1)(

Local Lorentz transformationˆˆ

ˆˆˆˆ

ˆ

ˆ

ˆˆ

ˆ

ˆ

ˆˆ

0:ˆ

ˆˆˆˆ

ˆ

ˆˆˆˆ

eeeeeeD

0 gD

Page 25: Modeling scalar fields consistent with positive mass

Witten spinor

0 i

iD

],[)()(8

1 ,)( ˆˆ

ˆˆ)1()1(

klj

l

i

jk

i

n

i

n

ii eDeD

ji

l

j

k

ikl eeg ˆ̂ˆˆ )()(

S

cehypersurfa spacelike dim.-1)-(n :),( q

(Witten equation)

0 r

We have solutions which are asymptotically

approaches a constant spinor

Page 26: Modeling scalar fields consistent with positive mass

Proof

2)1(22 ||4

1||||

2

1 RDDD n

i

i

2)1(22

0 ||4

1||.).(

2

1||8 RDccDdSM ni

iADM

0 0)1(

ADM

n MR

0],[ ],[ 0 0 )1( lk

ijkl

n

jiiADM RDDDM

∑ is flat space

Page 27: Modeling scalar fields consistent with positive mass

Surface integral

00

00

)1(

11

)1(

0

11

1

)(4

1

)(.).(2

1

j

ji

j

ij

i

A

A

i

i

j

njn

hhdS

dSdSccDdS

01

)1(

0101 nD

0

)1(

101010

0

)1(

10

0

)1(

0)(

0)( 0

i

ni

A

A

i

n

i

i

i

n

i

i

i

iD

1

)1( 1],)[(

16

1njk

j

i

kk

i

j

i

n

rOhh

ki

kjj

i

j

i

ijijij eheehg )(2

1)( )( ,

ˆ)0(ˆ(0)ˆ

1