Top Banner
Modeling of fractional dynamics using L´ evy walks - recent advances Marcin Magdziarz Hugo Steinhaus Center Faculty of Pure and Applied Mathematics Wroclaw University of Science and Technology, Poland Fractional PDEs: Theory, Algorithms and Applications ICERM, Brown University, June 2018 Marcin Magdziarz (Wroclaw) Modelling of fract. dynamics - L´ evy walks ICERM 2018 1 / 45
70

Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Apr 20, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Modeling of fractional dynamics using Levy walks -

recent advances

Marcin Magdziarz

Hugo Steinhaus Center

Faculty of Pure and Applied Mathematics

Wrocław University of Science and Technology, Poland

Fractional PDEs: Theory, Algorithms and ApplicationsICERM, Brown University, June 2018

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 1 / 45

Page 2: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Outline

Examples of applications of Levy walks

Basic definitions of Levy walks

Asymptotic (diffusion) limits of multidimensional Levy walks

Corresponding fractional diffusion equations

Explicit densities in multidimensional case

Other results

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 2 / 45

Page 3: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Examples of applications of Levy walks

Light transport in optical materialsP. Barthelemy, P.J. Bertolotti, D.S. Wiersma, Nature 453, 495 (2008).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 3 / 45

Page 4: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Examples of applications of Levy walks

Foraging patterns of animalsM. Buchanan, Nature 453, 714 (2008).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 4 / 45

Page 5: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Examples of applications of Levy walks

Migration of swarming bacteriaG. Ariel et al., Nature Communications (2015).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 5 / 45

Page 6: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Examples of applications of Levy walks

Blinking nanocrystalsG. Margolin, E. Barkai, Phys. Rev. Lett. 94, 080601 (2005)F.D. Stefani, J.P. Hoogenboom, E. Barkai, Physics Today, 62 (2009)Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 6 / 45

Page 7: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Examples of applications of Levy walks

Human travelD. Brockmann, L. Hufnagel, and T. Geisel, Nature 439, 462 (2006).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 7 / 45

Page 8: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – 1D case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 8 / 45

Page 9: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – 1D case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Jumps:Ji = ΛiTi

where Λi are iid random variables with

P(Λi = 1) = p, P(Λi = −1) = 1− p.

They govern the direction of the jumps (velocity v = 1). |Ti | = |Ji |.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 8 / 45

Page 10: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – 1D case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Jumps:Ji = ΛiTi

where Λi are iid random variables with

P(Λi = 1) = p, P(Λi = −1) = 1− p.

They govern the direction of the jumps (velocity v = 1). |Ti | = |Ji |.Number of jumps up to time t:

Nt = max{n ≥ 0 : T1 + ...+ Tn ≤ t}.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 8 / 45

Page 11: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Definition: Wait-First Levy Walk – 1D case

RWF (t) =

Nt∑

i=1

Ji

Note that |RWF (t)| ≤ t.

0

0

t

RW

F(t)

J3

J4

J1

T2

J2

T3

T4

T5

J5

T6

J6T

1

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 9 / 45

Page 12: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Definition: Jump-First Levy Walk – 1D case

RJF (t) =

Nt+1∑

i=1

Ji

0

0

t

RJF

(t)

T1

T2

J2

T3

J3

T4

J4

T5

J5

T6

J6J

1

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 10 / 45

Page 13: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Definition: Standard Levy Walk – 1D case

R(t) =

Nt∑

i=1

Ji + (t − T (Nt))ΛNt+1,

where T (n) =∑

n

i=1 Ti . Note that |R(t)| ≤ t.

0

0

t

R(t)

J5

J1

T1

J2

T2

J3

T3

J4

T4

T5

J6

T6

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 11 / 45

Page 14: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – d -dimensional case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 12 / 45

Page 15: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – d -dimensional case

Waiting times: Ti , i = 1, 2, ... – sequence of iid positive randomvariables with power-law distribution P(Ti > t) ∝ 1

tα, α ∈ (0, 1).

Jumps in Rd :

Ji = ΛiTi

where Λi are iid unit random vectors in Rd with the distribution

Λ(dx) on d−dimensional sphere Sd . They govern the direction ofthe jumps in Rd (velocity v = 1). We have |Ti | = ‖Ji‖.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 12 / 45

Page 16: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – d -dimensional case

Trajectory Distribution Λ on S2

−4 −2 0

x 105

−4

−2

0

2x 10

5

292.5o315o

337.5o

0o

22.5o

45o67.5o112.5o

135o

157.5o

180o

202.5o

225o

247.5o

90o

270o

0 2 4 6

x 105

0

2

4

6

x 105

292.5o315o

337.5o

0o

22.5o

45o67.5o112.5o

135o

157.5o

180o

202.5o

225o

247.5o

90o

270o

−2 0 2

x 105

−4

−2

0

2x 10

5

292.5o315o

337.5o

0o

22.5o

45o67.5o112.5o

135o

157.5o

180o

202.5o

225o

247.5o

90o

270o

a)

b)

c)

d)

e)

f)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 13 / 45

Page 17: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – d -dimensional case

Wait-First Levy Walk in Rd

RWF (t) =

Nt∑

i=1

Ji

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 14 / 45

Page 18: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – d -dimensional case

Wait-First Levy Walk in Rd

RWF (t) =

Nt∑

i=1

Ji

Jump-First Levy Walk in Rd

RJF (t) =

Nt+1∑

i=1

Ji

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 14 / 45

Page 19: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Basic definitions – d -dimensional case

Wait-First Levy Walk in Rd

RWF (t) =

Nt∑

i=1

Ji

Jump-First Levy Walk in Rd

RJF (t) =

Nt+1∑

i=1

Ji

Standard Levy Walk in Rd

R(t) =

Nt∑

i=1

Ji + (t − T (Nt))ΛNt+1,

where T (n) =∑

n

i=1 Ti .

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 14 / 45

Page 20: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Page 21: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Page 22: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Sα(t) – α-stable subordinator (limit of waiting times)

S−1α (t) = inf{τ ≥ 0 : Sα(τ) > t}

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Page 23: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Wait-First Levy walk)

The following convergence in distribution holds as n → ∞

RWF (nt)

n

d−→ L−α (S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Sα(t) – α-stable subordinator (limit of waiting times)

S−1α (t) = inf{τ ≥ 0 : Sα(τ) > t}Coupling! |∆Lα(t)| = ∆Sα(t)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 15 / 45

Page 24: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – 1D case

0

0

t

...

Figure: Trajectory of the diffusion limit of Wait-First Levy walk. It can haveinfinitely many jumps on finite interval.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 16 / 45

Page 25: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Jump-First Levy walk)

The following convergence in distribution holds as n → ∞

RJF (nt)

n

d−→ Lα(S−1α (t)).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 17 / 45

Page 26: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Jump-First Levy walk)

The following convergence in distribution holds as n → ∞

RJF (nt)

n

d−→ Lα(S−1α (t)).

Here:

Lα(t) – d -dimensional α-stable Levy motion (limit of jumps) withFourier transform

ΦLα(t)(k) = exp

(

t

Sd

|〈k , s〉|α(isgn(〈k , s〉) tan(πα/2) − 1)Λ(ds))

Λ(ds) - distribution of jump direction

Sα(t) – α-stable subordinator (limit of waiting times), coupling asbefore.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 17 / 45

Page 27: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – 1D case

0

0

t

...

Figure: Trajectory of the diffusion limit of Jump-First Levy walk. It can haveinfinitely many jumps on finite interval.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 18 / 45

Page 28: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Standard Levy walk)

The following convergence in distribution holds as n → ∞

R(nt)

n

d−→ Z (t).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 19 / 45

Page 29: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – d -dimensional case

Theorem (Diffusion limit of Standard Levy walk)

The following convergence in distribution holds as n → ∞

R(nt)

n

d−→ Z (t).

Here:

Z (t) =

L−α (S−1α (t)) if t ∈ R

L−α (S−1α (t)) +

t − G (t)

H(t)− G (t)(Lα(S

−1α (t))− L−α (S

−1α (t))) if t /∈ R,

R = {Sα(t) : t ≥ 0},G (t) = S−

α (S−1α (t)),

H(t) = Sα(S−1α (t))).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 19 / 45

Page 30: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Diffusion limits of Levy walks – 1D case

...

Z

Figure: Trajectory of the diffusion limit of standard Levy walk. It can haveinfinitely many changes of direction on finite interval.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 20 / 45

Page 31: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Fractional diffusion equations for Levy Walks

Fractional material derivative (d -dimensional)

Dα,Λp(x , t) =

u∈Sd

(

∂t+ 〈∇, u〉

p(x , t)Λ(du),

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 21 / 45

Page 32: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Fractional diffusion equations for Levy Walks

Fractional material derivative (d -dimensional)

Dα,Λp(x , t) =

u∈Sd

(

∂t+ 〈∇, u〉

p(x , t)Λ(du),

〈·, ·〉 - scalar product in Rd

∇ =(

∂∂x1

, ∂∂x2

, . . . , ∂∂xd

)

- gradient

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 21 / 45

Page 33: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Fractional diffusion equations for Levy Walks

Fractional material derivative (d -dimensional)

Dα,Λp(x , t) =

u∈Sd

(

∂t+ 〈∇, u〉

p(x , t)Λ(du),

〈·, ·〉 - scalar product in Rd

∇ =(

∂∂x1

, ∂∂x2

, . . . , ∂∂xd

)

- gradient

In Fourier-Laplace space

FxLt{Dα,Λp(x , t)} =

u∈Sd

(s − i〈k , u〉)α Λ(du)p(k , s).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 21 / 45

Page 34: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Fractional diffusion equations for Levy Walks

Wait-First Levy Walk in Rd

Dα,ΛpWF (x , t) = δ(x)

t−α

Γ(1 − α),

pWF (x , t) - PDF of diffusion limit.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 22 / 45

Page 35: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Fractional diffusion equations for Levy Walks

Wait-First Levy Walk in Rd

Dα,ΛpWF (x , t) = δ(x)

t−α

Γ(1 − α),

pWF (x , t) - PDF of diffusion limit.

Jump-First Levy Walk in Rd

Dα,ΛpJF (x , t) = ν(dx , (t,∞)),

pJF (x , t) - PDF of diffusion limit, ν - Levy measure of (Lα,Sα).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 22 / 45

Page 36: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Fractional diffusion equations for Levy Walks

Wait-First Levy Walk in Rd

Dα,ΛpWF (x , t) = δ(x)

t−α

Γ(1 − α),

pWF (x , t) - PDF of diffusion limit.

Jump-First Levy Walk in Rd

Dα,ΛpJF (x , t) = ν(dx , (t,∞)),

pJF (x , t) - PDF of diffusion limit, ν - Levy measure of (Lα,Sα).

Standard Levy Walk in Rd

Dα,Λp(x , t) = δ(‖x‖ − t)

t−α

Γ(1− α),

p(x , t) - PDF of diffusion limit.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 22 / 45

Page 37: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

Page 38: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

II Method – Markov approach

Limit processes L−α (S−1α (t)), Lα(S

−1α (t)) and Z (t) are NOT Markov

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

Page 39: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

II Method – Markov approach

Limit processes L−α (S−1α (t)), Lα(S

−1α (t)) and Z (t) are NOT Markov

d + 1 - dimensional processes (L−α (S−1α (t)), t − G(t−)) and

(Lα(S−1α (t)),H(t)− t) are Markov [M. Meerschaert, P. Straka, Ann.

Probab. (2014)].

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

Page 40: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

I Method [D. Froemberg, M. Schmiedeberg, E. Barkai, V.Zaburdaev, Phys. Rev. E 91, 022131 (2015)]

Inversion formula of Fourier-Laplace transform for 1D ballisticprocesses using Sokhotsky-Weierstrass theorem.

II Method – Markov approach

Limit processes L−α (S−1α (t)), Lα(S

−1α (t)) and Z (t) are NOT Markov

d + 1 - dimensional processes (L−α (S−1α (t)), t − G(t−)) and

(Lα(S−1α (t)),H(t)− t) are Markov [M. Meerschaert, P. Straka, Ann.

Probab. (2014)].We have

(

L−α (S−1α (t)) = dx , t − G(t−) = dv

)

=

= ν(Lα,Sα)(R× [v ,∞))U(dx , t − dv)1{0≤v≤t},

ν - Levy measure, U - potential measure.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 23 / 45

Page 41: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

PDF of Wait-First Levy Walk

(i) if x ∈ (−t, 0), then

pWF (x , t) =p sin(πα)t1−α

π|x |1−α×

(1− x

t)α

p2(1− x

t)2α + (1− p)2(1+ x

t)2α + 2p(1− p)(1− x

t)α(1 + x

t)α cos(πα)

,

(ii) if x ∈ (0, t), then

pWF (x , t) =(1 − p) sin(πα)t1−α

π|x |1−α×

(1+ x

t)α

p2(1+ x

t)2α + (1− p)2(1− x

t)2α + 2p(1− p)(1+ x

t)α(1 − x

t)α cos(πα)

,

(iii) if |x | ≥ t then pWF (x , t) = 0.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 24 / 45

Page 42: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pWF (x , t) calculated for α = 0.5, p = 0.1 and different t.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 25 / 45

Page 43: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pWF (x , t) calculated for α = 0.5, t = 1 and different p.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 26 / 45

Page 44: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pWF (x , t) calculated for p = 0.25, t = 1 and different α.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 27 / 45

Page 45: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

PDF of Jump-First Levy Walk

(i) if x < −t, then

pJF (x , t) =(p − 1) sin(πα)

πx

1

(1− p)(−x/t − 1)α + p(−x/t + 1)α,

(ii) if x ∈ [−t, t], then

pJF (x , t) =p(1 − p) sin(πα)

πx×

(1+ x

t)α − (1− x

t)α

p2(1− x

t)2α + (1− p)2(1+ x

t)2α + 2p(1− p)(1− x

t)α(1 + x

t)α cos(πα)

,

(iii) if x > t, then

pJF (x , t) =p sin(πα)

πx

1

p(x/t − 1)α + (1− p)(x/t + 1)α. (1)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 28 / 45

Page 46: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pJF (x , t) calculated for α = 0.5, t = 1 and different p.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 29 / 45

Page 47: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

Figure: PDF pJF (x , t) calculated for α = 0.5, p = 0.5 and different t.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 30 / 45

Page 48: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

PDF of Standard Levy Walk

(i) if |x | < t, then

p(x , t) =p(1− p) sin(πα)

πt×

(1− x

t)α−1(1+ x

t)α + (1+ x

t)α−1(1− x

t)α

p2(1− x

t)2α + (1− p)2(1+ x

t)2α + 2p(1− p)(1− x

t)α(1+ x

t)α cos(πα)

(ii) if |x | ≥ t, then p(x , t) = 0.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 31 / 45

Page 49: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – 1-dimensional case

Figure: PDF p(x , t) calculated for α = 0.5, t = 1 and different p.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 32 / 45

Page 50: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic standard d-dimensional Levy Walk

General method:Let p(x , t), x = (x1, x2, ..., xd ) ∈ R

d , be the PDF of Levy walkZ (t) = (Z1(t),Z2(t), ...,Zd (t)). The Fourier-Laplace transform of p(x , t)is given by

p(k , s) =1

s

Sd

(

1−⟨

ik

s, u⟩)α−1

Λ(du)∫

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du),

Denote by Φ1(x) the PDF of Z1(1).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 33 / 45

Page 51: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − 1

π |x | Im2F1((1 − α)/2, 1− α/2; 3/2+ n; 1

x2)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 34 / 45

Page 52: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − 1

π |x | Im2F1((1 − α)/2, 1− α/2; 3/2+ n; 1

x2)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Using the fact that

Z (1)d= ‖Z (1)‖V ,

we get that the PDF ΦR(·) of ‖Z (1)‖ equals

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 34 / 45

Page 53: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − 1

π |x | Im2F1((1 − α)/2, 1− α/2; 3/2+ n; 1

x2)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Using the fact that

Z (1)d= ‖Z (1)‖V ,

we get that the PDF ΦR(·) of ‖Z (1)‖ equals

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r).

- Finally

p(x , t) =Γ(n + 3/2)

2πn+3/2t ‖x‖2n+2ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 34 / 45

Page 54: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

Figure: 3-dimensional PDF p(x , t) calculated for α = 0.3 and t = 1 .

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 35 / 45

Page 55: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − 1

π |x | Im2F1((1− α)/2, 1− α/2; 1+ n; 1

x2)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 36 / 45

Page 56: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − 1

π |x | Im2F1((1− α)/2, 1− α/2; 1+ n; 1

x2)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Moreover

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r).

Here Dn+1/2− is the right-side Riemann-Liouville fractional derivative of

order n + 1/2.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 36 / 45

Page 57: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − 1

π |x | Im2F1((1− α)/2, 1− α/2; 1+ n; 1

x2)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

where 2F1(a, b; c ; x) is the hypergeometric function.- Moreover

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r).

Here Dn+1/2− is the right-side Riemann-Liouville fractional derivative of

order n + 1/2.- Finally

p(x , t) =Γ(n + 1)

2πn+1t ‖x‖2n+1ΦR

(‖x‖t

)

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 36 / 45

Page 58: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

Figure: 2-dimensional PDF p(x , t) calculated for α = 0.6 and t = 1 .

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 37 / 45

Page 59: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy Walk

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 38 / 45

Page 60: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy WalkThe Fourier-Laplace transform of pWF (x , t) is given by

pWF (k , s) =1

s

1∫

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 38 / 45

Page 61: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy WalkThe Fourier-Laplace transform of pWF (x , t) is given by

pWF (k , s) =1

s

1∫

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du).

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − Γ(n)

Γ(n+ 1/2) |x | Im1

2F1(−α/2, (1− α)/2; 3+ n/2; 1x2),

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r),

pWF (x , t) =Γ(n + 3/2)

2πn+3/2t ‖x‖2n+2ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 38 / 45

Page 62: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Wait-First d-dimensional Levy Walk

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − Γ(n)

Γ(n + 1/2) |x | Im1

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r),

pWF (x , t) =Γ(n + 1)

2πn+1t ‖x‖2n+1ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 39 / 45

Page 63: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy Walk

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 40 / 45

Page 64: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy WalkThe Fourier-Laplace transform of pJF (x , t) is given by

pJF (k , s) =1

s

(

1−∥

ik

s

α

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du)

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 40 / 45

Page 65: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy WalkThe Fourier-Laplace transform of pJF (x , t) is given by

pJF (k , s) =1

s

(

1−∥

ik

s

α

Sd

(

1−⟨

ik

s, u⟩)α

Λ(du)

)

.

(i) Odd number of dimensions d = 2n + 3.

- We have

Φ1(x) = − Γ(n)

Γ(n+ 1/2) |x |α+1Im

cos(πα) + i sin(πα)

2F1(−α/2, (1− α)/2; 3/2+ n; 1x2),

ΦR(√r) =

2√π

Γ(n + 3/2)rn+1(−1)n+1 d

n+1

drn+1Φ1(

√r),

pJF (x , t) =Γ(n + 3/2)

2πn+3/2t ‖x‖2n+2ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 40 / 45

Page 66: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

PDFs of Levy Walks – d -dimensional case

PDF of isotropic Jump-First d-dimensional Levy Walk

(ii) Even number of dimensions d = 2n + 2.

- We have

Φ1(x) = − Γ(n)

Γ(n + 1/2) |x |α+1Im

cos(πα) + i sin(πα)

2F1(−α/2, (1− α)/2; 1+ n; 1x2),

ΦR(√r ) =

2√π

Γ(n + 1)rn+1/2D

n+1/2− {Φ1(

√t)}(r),

pJF (x , t) =Γ(n + 1)

2πn+1t ‖x‖2n+1ΦR

(‖x‖t

)

.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 41 / 45

Page 67: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Other results

diffusion limits and governing equations for non-ballistic Levy walks

path properties of Levy walks (martingale properties, upper and lowerlimits, variation etc.)

distributed order Levy walks

Levy walks and flights in quenched disorder

multipoint PDFs of Levy walks

aging Levy walks

ergodic properties of Levy walks

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 42 / 45

Page 68: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Other results – multipoint PDFs of Levy walks

Figure: PDF of (Z (t1),Z (t2)) for α = 0.5, p = 0.5, t1 = 1, t2 = 2.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 43 / 45

Page 69: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

Other results – aging Levy walks

−2 −1.5 −1 −0.5 0 0.5 1 1.5 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

Levy walk

Aging Levy walk

Wait-firstAging wait-first

α = 0.4

Figure: PDFs of standard and aging Levy walk.

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 44 / 45

Page 70: Modeling of fractional dynamics using L vy walks - recent ......WF(t) = XN t i=1 J i Note that |R WF(t)| ≤ t. 0 0 t R WF (t) J 3 J 4 J 1 T 2 J 2 T 3 T 4 T 5 J 5 T 6 T 6 Marcin Magdziarz

The end – thank you for your attention !!!

References

[1] M. Magdziarz, H.P. Scheffler, P. Straka, P. Zebrowski, Stoch. Proc.Appl. 125, 4021 (2015).

[2] M. Magdziarz , M. Teuerle, Comm. Nonlinear Sci. Num. Sim. 20,489 (2015).

[3] M. Magdziarz, T. Zorawik, Phys. Rev. E 94, 022130 (2016).

[4] M. Magdziarz, T. Zorawik, Fract. Calc. Appl. Anal. 19, 1488-1506(2016).

[5] M. Magdziarz, T. Zorawik, Comm. Nonlinear Sci. Num. Sim. 48,462-473 (2016).

[6] M. Magdziarz, T. Zorawik, Phys. Rev. E 95, 022126 (2017).

Marcin Magdziarz (Wrocław) Modelling of fract. dynamics - Levy walks ICERM 2018 45 / 45