Top Banner
Modeling chaos 1
22

Modeling chaos 1

Feb 23, 2016

Download

Documents

kura

Modeling chaos 1. Books: H. G. Schuster, Deterministic chaos , an introduction, VCH, 1995 H-O Peitgen, H. Jurgens, D. Saupe, Chaos and fractals Springer, 1992 H-O Peitgen, H. Jurgens, D. Saupe, Fractals for the Classroom , Part 1 and 2, Springer 1992. Journals : - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Modeling chaos 1

Modeling chaos 1

Page 2: Modeling chaos 1

Books: H. G. Schuster, Deterministic chaos, an introduction, VCH, 1995H-O Peitgen, H. Jurgens, D. Saupe, Chaos and fractalsSpringer, 1992H-O Peitgen, H. Jurgens, D. Saupe, Fractals for the Classroom, Part 1 and 2, Springer 1992. Journals: Chaos: An Interdisciplinary Journal of Nonlinear Science, Published by American Institute of PhysicsIEEE Transactions on Circuits and Systems, Published by IEEE Institute

  

Page 3: Modeling chaos 1

One-dimensional discrete systems

• Logistic equation• Mechanism of doubling the period• Bifurcation diagram• Doubling – period tree, Feigenbaum

constants• Lyapunov exponents – chaotic solutions

Page 4: Modeling chaos 1

Continuous-time systems

• Rossler differential equation

• Lorenz differential equation

Page 5: Modeling chaos 1

One – dimensional discrete systems

)x(fx n1n

]1,0[)f(x ],1,0[x nn

Page 6: Modeling chaos 1

Bernouli function

1 mod x2)x(f

Page 7: Modeling chaos 1

Triangular function

5.021)( xrxf

Page 8: Modeling chaos 1

Logistic function

)x1( x r)x(f

Page 9: Modeling chaos 1

Sinusoidal map

)xsin( r)x(f

Page 10: Modeling chaos 1

Iterating logistic map

)x1(x rx nn1n

Page 11: Modeling chaos 1

r=2.6 x0=0.25

Page 12: Modeling chaos 1

r=3.2, x0=0.25

Page 13: Modeling chaos 1

x0=0.25, r=3.48

Page 14: Modeling chaos 1

x0=0.2, r=4

0 50 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 15: Modeling chaos 1

Stability of equilibrium point:

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1r=2.6

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1r=3.48

Page 16: Modeling chaos 1

Plot of the function: f(x)

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1r=2.6

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 17: Modeling chaos 1

f(2)( x ) = f ( f (x) )

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1r=3.2

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 18: Modeling chaos 1

f(4)( x ) = f ( f ( f ( f (x) ) ) )

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1r=3.2

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 19: Modeling chaos 1

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1r=3.2

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 20: Modeling chaos 1

Bifurcation diagram

Page 21: Modeling chaos 1

r

x

r

Period doubling tree

Page 22: Modeling chaos 1

Why the discrete time logistic equation is so complicated compared to the continuous time one ?