Top Banner
Model of visual cortex Preferred direction Null direction V G E G I Experiments: Université Rene Descartes, Paris (rats and cats, visual cortex neurons, in-vivo, dynamic clamp): Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg
37

Model of visual cortex

Dec 15, 2014

Download

Education

SSA KPI

AACIMP 2011 Summer School. Neuroscience stream. Lecture by Anton Chizhov.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Model of visual cortex

Model of visual cortex

Preferred direction Null direction

V

GE

GI

Experiments:Université Rene Descartes, Paris (rats and cats, visual cortex neurons, in-vivo, dynamic clamp):

Anton V. Chizhov

Ioffe Physico-Technical Institute of RAS,St.-Petersburg

Page 2: Model of visual cortex

Introduction

Page 3: Model of visual cortex

Experiment. Thalamic neuron responses on 3 trials of visual stimulation by movie.

Page 4: Model of visual cortex

F. Chavane, D. Sharon, D. Jancke, O.Marre, Y. Frégnac and A.

Grinvald // Frontiers in Systems Neuroscience, v.5, article 4, 1-26,

2011.

Local interactions in visual cortex

Page 5: Model of visual cortex

1 mm

Hypercolumn

Retinotopic projection

Orientation-tuned patchy connections

Ocular dominance

Зрительная кора

Experiment. Responses of a neuron selective to direction of stimulus movement.

Experiment. Orientation map.

Page 6: Model of visual cortex

Model. Response of 1mm2-area of the cortex on a change of orientation of visual stimulus-bar.

Model. Responses of 2 neurons preferring orthogonal orientations.

Simulation

Page 7: Model of visual cortex

2-d CBRD model of visual cortex

• Continuum in 2-d cortical space

• 2 layers: 2/3 и 4

• 2 populations: exc. (E) and inh. (I) neurons in each layer

• 3 types of synapses: AMPA, GABA-A and NMDA

• pinwheel-structure of input

• input is the luminance gradient of the visual stimulus

[И.А

.Шев

елев

. Н

ейро

ны-д

етек

торы

зри

тел

ьной

кор

ы.

2010

]

Page 8: Model of visual cortex

Computational costs for simulation of 1 mm2 of cortex

Monte-Carlo simulation(101-102 ODEs for 1 neuron

+ 2-104 ODEs for synapses)X 2-10 synaptic typesX 102 neurons 1 one column X 101-102 columns in 1 hypercolumnX 101 hypercolumns in 1 mm2

X 102-103 stimulation trialsTotal: 107-1012 ODEs.

CBRD continual model(101 PDEs for 1 neuron

X 2-10 types of neuronsX 101-102 discretization points in t*- space + 101 ODEs for synapses) X (101-102)2 discretization points in (x,y)-space

Total: 105-108 PDEs.

Page 9: Model of visual cortex

Boundary conditions:

Firing rate:

)(1)exp(2

)(~,),(~2-)(

)),(),(),(),(),(/(

),()(1)(

2

m

*****

TerfT

TFUU

TTFdtdT

UB

ttggttgttgttgttgC

dtdUUBUAUH

T

AHPLHMADRm

m

-- Hazard function

). 0.0117 0.072 0.257 1.1210(6.1exp=)( 4323 TTTTUA

[Chizhov, Graham // PRE 2007,2008]

CBRD model of inhibitory population

[Chizhov et al. // Neurocomputing 2006]

Page 10: Model of visual cortex

Boundary conditions:

Firing rate:

CBRD model of excitatory adaptive neuron population

2-comp. model [Чижов // Биофизика 2004]

Page 11: Model of visual cortex

preferred orientation:

pinwheel centers:

gS

t

d

fw

NMDAGABAAMPAs ,,

Synaptic inputs

Synaptic kinetics

Synaptic morphologyIntracortical connections:

Thalamic input:

Page 12: Model of visual cortex

Connections

740

66

3540

2400

1440

X/Y

L2/3

L4+5+6

E→E

38 1300

2801720720

X/Y

L2/3

L4+5+6

E→I

420

4680

800

L2/3

L4+5+6

I→E

28

220

33490

L2/3

L4+5+6

I→I

Potential connectivity matrix[Binzegger 2004]

Electrophysiological estimations[Thomson 2002, 2007]

postS

postprepostprepre

hitpostprepost

L

postpre

restVV

PSPdaP

g

g

),(

X/Y

L2/3

L4

2.7

1.2

2.0

2.8

I→II→E

E→E E→I

X/Y

L2/3

L4

1.7 2.7

0.6

7.1

9.8

L2/3

L4

2.7 9

2.3

L2/3

L4

10

12

[Bannister, Thomson 2007]

[Tamas 1997]

[Lubke,Feldmeyer 2007]

[Yoshimura, Callaway 2005]

Page 13: Model of visual cortex

Analysis of the model

Page 14: Model of visual cortex

CBRD ring model for

HH-neurons with synaptic kinetics

RDA-based ring model for

LIF-neurons with synaptic kinetics

Kolmogorov-Fokker-Planck (KFP)-based ring model for

LIF-neurons with synaptic kinetics

2-d CBRD model for Hodgkin-Huxley (HH)-neurons with

synaptic kinetics

KFP-based ring model for

LIF-neurons with instantaneous synaptic currents

Firing-Rate (FR) ring model with

instantaneous synaptic currents

=

20151050

Hz

Hierarchy of models

Page 15: Model of visual cortex

Canonical firing-rate ring model [Ben Yishai 1995] [Hansel, Sompolinsky, 1996]

)),((),(=),( . tIt

dttd FRst

FRFR

)(cos ),( ))(cos(21

=),( 02020

IIdtJJtI FR

Virtual rotation effect

Contrast invariance effect

Page 16: Model of visual cortex

Map 2-d geometry to a ring

Page 17: Model of visual cortex

Threshold-linear approximation of steady-state firing rate of LIF noisy neuron

pA

Hz

0 100 200 300 4000

20

40

60

80

100

Page 18: Model of visual cortex

Map CBRD-ring to FR-ring

Assumptions:

Page 19: Model of visual cortex

Canonical firing-rate ring model with shunt

)),(~,),(~(),(=),( . tstIt

dttd st

FRFR

)(cos~~ )( ))(cos~~(21

=),(~02020

IIdJJtI

)(cos~~ )( ))(cos~~(21

=),(~02020

KKdLLts

Page 20: Model of visual cortex

Fokker-Planck-based ring model

)(cos~~ )( ))(cos~~(21

=),(~02020

IIdJJtI

)(cos~~ )( ))(cos~~(21

=),(~02020

KKdLLts

)(2)(

)(2

22

resetmV

Lrestm VV

VtsgtI

VVVt

TVVm

V

Vt

2

)(

Page 21: Model of visual cortex

2-d CBRD

FR-shunt ring FP-shunt ring

CBRD ring, cos-profileCBRD ring, exp-profile

canonical FR ring model

CBRD ring, nonadapt.

CBRD ring, 2-comp. LIF

CBRD ring, 1-comp. LIF

Page 22: Model of visual cortex

Stationary solutions and the effect of Contrast Invariance

No adaptation + adaptation + adaptation + NMDA

Page 23: Model of visual cortex

Comparison with experiments

Page 24: Model of visual cortex

C

Vd

Vd

Vd

Vd

Vs

VsIs

Is

g=Id/(Vd-Vrev)

B

Рис. Согласование модели двух-компонентного нейрона (кружки) с экспериментальными данными (сплошные линии) по одновременным регистрациям на соме и дендрите [Pouille, Scanziani 2004]. A, ответы на стимуляцию в alveus в режиме фиксации тока показаны слева, ответ с фиксацией потенциала на соме -- справа. B, в другой клетке получены ответы на подачу тормозящей проводимости (gin амплитудой 5nS и временной зависимостью, показанной зеленой линией) в режиме dynamic-clamp.

A

[F.Pouille, M.Scanziani //Nature, 2004]

Passive properties of 2-compartment neuron

Рис. Модель и эксперимент [Karnup, Stelzer 1999]

Page 25: Model of visual cortex

Spiking of single neuron

E X P E R I M E N T

M O D E L

Page 26: Model of visual cortex

Lower Point Upper Point

M O D E L

E X P E R I M E N T

Page 27: Model of visual cortex

[Myme et al. 2003]

AMPA- and NMDA-EPSCs

[Dong et al. 2004]

Synaptic currents

EPSCs and IPSCs

E X P E R I M E N T

M O D E L

Page 28: Model of visual cortex

Spatiotemporal patterns generated by an electrical stimulus reveal clusters of activity. Scale bars in the experiments are 220μm.

E X P E R I M E N T

Activity patterns in visual cortex slices

M O D E L

3.5 ms 6.5 ms [Tucker & Katz, 2003]

3.5 ms 6.5 ms-68.8

-69.4

-70

mV

*

-68.8

-69.4

-70

mV

*

Page 29: Model of visual cortex

[Tucker & Katz, 2003]PSPs

Responses on electrical stimulation

E X P E R I M E N T

M O D E L

PSPs

ms

mV

0 20 40 60-70

-68

-66

-64

-62 weakmoderatestrong

ms

mV

0 20 40 60

-6

-4

-2

0

2

weakmoderatestrong

ms

mV

0 20 40 60

-68

-66

-64

-62

-60

controlBic

ms

mV

0 20 40 60

-68

-66

-64

-62

-60 controlBic

Page 30: Model of visual cortex

-69.5

-70

mV

*

*

Stimulation of the diffuse zone and optical claster

2 stimulating electrodes

E X P E R I M E N T

M O D E L

S1

S2

[Tucker & Katz, 2003]

S1

S2

ms

mV

0 20 40 60

-65

-60

expected S1+S2

S1+S2

*

*S1

S2

Page 31: Model of visual cortex

-69

-70

mV

*

*

E X P E R I M E N T

M O D E L

S1

S2

[Tucker & Katz, 2003]

ms

mV

0 20 40 60

-70

-65

-60

expected S1+S2

S1+S2

S1

S2

*

*S1

S2

Stimulation of two diffuse zones

2 stimulating electrodes

Page 32: Model of visual cortex

Vo

ltag

e(m

V)

Hz

-70

-60

-50

-40

0

25

50

75neuron preferred 0o-oriented bar

Time (ms)

Vo

ltag

e(m

V)

Hz

0 50 100 150 200 250 300-70

-60

-50

-40

20

40

60

80neuron preferred 45o-oriented bar

Excitatory neurons

Interneurons

ExperimentModelV

olta

ge

(mV

)

Hz

-70

-60

-50

-40

0

25

50

75neuron preferred 0o-oriented bar

Time (ms)

Vo

ltag

e(m

V)

Hz

0 50 100 150 200 250 300-70

-60

-50

-40

20

40

60

80neuron preferred 45o-oriented bar

Page 33: Model of visual cortex

StimulusVisual cortex

1 mm

E X P E R I M E N T

M O D E L

E X P E R I M E N T

Visual stimulation

Page 34: Model of visual cortex
Page 35: Model of visual cortex

Explanation:

Model

Visual illusion (tilt after-effect)

Page 36: Model of visual cortex

60

40

20

0

Hz

x

xx

x

x x x

xx

x xxx

x x x 50

25

0

Hz

x

xx

x

x x x

xx

x xxx

x x x

Hypothetic effect of depression of the “background” image by binocular vision

Page 37: Model of visual cortex

Thanks to colleagues:

Lyle Graham

Adrien Schramm

Erez Persi

Elena Smirnova

Anatoly Buchin

Andrey Turbin