Top Banner
Model of F-16 Fighter Aircraft - Equation of Motions - Ying Huo Dept. of electrical Engineering - Systems University of Southern California Los Angeles, CA 90007 [email protected]
10

Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Mar 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Model of F-16 Fighter Aircraft

- Equation of Motions -

Ying Huo Dept. of electrical Engineering - Systems

University of Southern California Los Angeles, CA 90007

[email protected]

Page 2: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Ref : [1]. Brian L. Stevens, Frank L. Lewis, Aircraft Control and Simulation, John Wiley & Sons, Inc. 1992 [2]. Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538, NASA, Washington, D.C., Dec. 1979

“ The mathematical model given here uses the wind-tunnel data from NASA-Langley wind-tunnel tests on a scale model of an F-16 airplane. The data apply to the speed range up to about Mach=0.6, and were used in a MASA-piloted simulation to study the maneuvering and stall/post-stall characteristics of a relaxed static-stability airplane.”

Page 3: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Nomenclature

State Variables:

V - true velocity, ft/sec α - angle of attack, radian ( range –10° ~ 45° )β - sideslip angle, radian ( range –30° ~ 30° ) φ - Euler (roll) angle, rad θ - Euler (pitch) angle, rad ϕ - Euler (yaw) angle, rad p - roll rate, rad/sec q - pitch rate, rad/sec r - yaw rate, rad/sec

disN - north displacement, ft

disE - east displacement, ft h - altitude, ft

powP - power

Control Variables:

Tδ - throttle setting, ( 0.0 – 1.0 )

Eδ - elevator setting, degree

Aδ - aileron setting, degree

Rδ - rudder setting, degree

Parameters:

ρ - air density, slugs/ft^3 M - Mach number T - total instantaneous engine thrust, N (lb) m - total airplane mass, slugs

tXC , - total x-axis force coefficient

tYC , - total y-axis force coefficient

tZC , - total z-axis force coefficient q - dynamic pressure, psf

sp - static pressure, psf

tLC , - total rolling-moment coefficient

Page 4: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

tMC , - total pitching-moment coefficient

tNC , - total yawing-moment coefficient t - temperature, R u - velocity in x -axis direction, ft/sec v - velocity in -axis direction, ft/sec yw - velocity in -axis direction, ft/sec zW - vehicle weight (lbs) b - wing span (ft) S - wing platform area (ft2) c - mean aerodynamic chord (ft)

xI - roll moment of inertia (slug-ft2)

yI - pitch moment of inertia (slug-ft2)

zI - yaw moment of inertia (slug-ft2)

xzI - product moment of inertia (slug-ft2)

xyI - product moment of inertia (slug-ft2)

yzI - product moment of inertia (slug-ft2)

cgRX - reference cg location (ft)

cgX - center of gravity location (ft) g - gravitational constant (ft/sec2)

Eh - engine angular momentum (slug-ft2/s)

rd - radian-to-degree constant, 29578.57=rd

Page 5: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Table 1. Mass and Geometry Properties

Symbol Parameter Value

W Vehicle weight (lbs) 20500

b Wing span (ft) 30

S Wing area (ft2) 300

c Mean aerodynamic chord (ft) 11.32

xI Roll moment of inertia (slug-ft2) 9496

yI Pitch moment of inertia (slug-ft2) 55814

zI Yaw moment of inertia (slug-ft2) 63100

xzI Product moment of inertia (slug-ft2) 982

xyI Product moment of inertia (slug-ft2) 0

yzI Product moment of inertia (slug-ft2) 0

Page 6: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Table 2. Control Surface Actuator Models

Symbol Command name

Deflection limit

Rate limit

Time constant

Positive sign

convention Effect

Eδ Elevator ± 25.0˚ 60˚/s 0.0495sec lag

Trailing edge down

Negative pitching moment

Aδ Ailerons ± 21.5˚ 80˚/s 0.0495sec lag

Right-wing trailing edge

down

Negative rolling moment

Rδ Rudder ± 30.0˚ 120˚/s 0.0495sec lag

Trailing edge left

Negative yawing moment,

positive rolling moment

Table 3. Other parameters used in the model

Symbol Parameter Value

cgRX Reference CG Location (ft) c35.0

g Gravitational constant (ft/sec2) 32.174

Eh Engine Angular Momentum (slug-ft2/s) ( assume fixed ! )

160.0

rd Radian-to-degree constant 57.29578

Page 7: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Six-degree-of-freedom Motion Equations The equations used to describe the motions of the airplanes were nonlinear, six-degree-of-freedom, rigid-body equations referenced to a body-fixed axis coordinate system. ------------------------------------------------------------------------------------------------------------ Force Equations ------------------------------------------------------------------------------------------------------------

222

cossinsin

coscos

wvuV

VwVvVu

++=

===

βαβ

βα

)(1sin , TSCqm

gqwrvu tX ++−−= θ&

tYCmSqgrupwv ,sincos ++−= φθ&

tZCmSqgpvquw ,coscos ++−= φθ&

VwwvvuuV&&&& ++

=

------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------

)(sin

)(tan

1

1

Vvuw

=

=

β

α

2)cos( βα

Vuwwu &&

&−

=

2)cos(coscosβ

βββV

VvvV &&& −=

Page 8: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

------------------------------------------------------------------------------------------------------------ Kinetics ------------------------------------------------------------------------------------------------------------

)cossin(tan φφθφ rqp ++=&

φφθ sincos rq −=&

θφφϕ

coscossin rq +

=&

------------------------------------------------------------------------------------------------------------ Moments ------------------------------------------------------------------------------------------------------------

tLxx

xz

x

zy CISbqpqr

IIqr

III

p ,)( +++−

= &&

rhCIcSqpr

IIpr

IIIq EtM

yy

xz

y

xz −+−+−

= ,22 )(&

qhCISbqqrp

IIpq

III

r EtNzz

xz

z

yx ++−+−

= ,)( &&

or

}])([)({1 22 qhIILINIqrIIIIpqIIIIIII

p Ezxzzxzxzzyzzyxxzxzzx

+++−−++−−

=&

rhIMpr

IIpr

IIIq E

yy

xz

y

xz −+−+−

= )( 22&

})(){(1 222 qhIILINIqrIIIIpqIIIIIII

r Ezxzzxxzyxzxzyxxxzzx

+++−−++−−

=&

where tLsbCqL ,= , tMCcsqM ,= , tNsbCqN ,=

------------------------------------------------------------------------------------------------------------ Navigation ------------------------------------------------------------------------------------------------------------

)sinsincossin(coscossin)sincossincos(sinsincoscoscoscos

ϕφϕθφβαϕφθϕφβϕθβα

++−+=

VVVNdis&

)cossinsinsin(coscossin)coscossinsin(sinsinsincoscoscos

ϕφϕθφβαϕφθϕφβϕθβα

−+++=

VVVEdis&

θφαθφβθβα coscossincossinsinsincoscos VVVh −−=&

Page 9: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Coefficients

14.453 )10703.00.1(10377.2 h−− ×−×=ρ

≥<×−

=−

0.350000.3900.35000)10703.00.1(519 5

hhh

t

=

=

pressure static1715

pressure dynamic21 2

tp

Vq

s ρ

ρ

tVM

××=

3.17164.1

),()(2, EdxdXqtX CqCVcC δαα +=

0.30086.0

0.20021.0])()([

202.0

])()([2

),,(,

RAdYpdYrd

dYpdYrRAdytY

pCrCVb

pCrCVbCC

δδααβ

ααδδβ

++++−=

++=

0.2519.0)(

2),(

)(2

),,(

1,

,

EdZqddz

dZqEddztZ

qCVcC

qCVcCC

δαβα

αδβα

−+=

+=

30),(

0.20),(])()([

2),(

])()([2

),,,(

3,2,1,

,

Rddl

AdldLpdLrddl

dLpdLrRAddltL

CCpCrCVbC

pCrCVbCC

δβαδβαααβα

ααδδβα

++++=

++=

),()()(2 ,, EdmcgcgRtZdMqtM CXXCqCVcC δαα +−+=

30),(

0.20),(

)(])()([2

),(

)(])()([2

),,,(

3,2,

,1,

,,

Rddn

Addn

cgcgrtYdNpdNrddn

cgcgrtYdNpdNrRAddntN

CC

XXCbcpCrC

VbC

XXCbcpCrC

VbCC

δβαδβα

ααβα

ααδδβα

++

−−++=

−−++=

Page 10: Model of F-16 · Nguyen, L.T., et al., Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability, NASA Tech. Pap. 1538,

Table 4. Source of aerodynamic coefficients

Coefficients Source Independent

variables ( ββαα rdrd dd == , )

XqC Table dα

xC Table Ed δα ,

YrC Table dα

YpC Table dα

1,ZC Table dα

ZqC Table dα

1,lC Table dd βα ,

LrC Table dα

LpC Table dα

2,lC Table dd βα ,

3,lC Table dd βα ,

MqC Table dα

mC Table Ed δα ,

1,nC Table dd βα ,

NrC Table dα

NpC Table dα

2,nC Table dd βα ,

3,nC Table dd βα ,