Top Banner
2/8/2012 1 Planeación de trayectorias para optimizar y controlar movimientos I Los sistemas del Robot II Cinemática del Robot Métodos para el control de movimiento Marcos de Referencia Cinemática Cinemática directa Parámetros de Denavit-Hartenberg Control System Sensors Kinematics Dynamics Task Planning Software Hardware Mechanical Design Actuators The Robot System
23

Mod 02 Robotica Ind 02(1)

Apr 06, 2018

Download

Documents

Alejandro Silva
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 1/23

2/8/201

Planeación de trayectorias para optimizar ycontrolar movimientos

I Los sistemas del RobotII Cinemática del Robot

Métodos para el control de movimientoMarcos de ReferenciaCinemáticaCinemática directaParámetros de Denavit-Hartenberg

Control System

Sensors

Kinematics

Dynamics

Task Planning

Software

Hardware

Mechanical Design

Actuators

The Robot System

Page 2: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 2/23

2/8/201

• In order to control and programme a robot wemust have knowledge of both it’s spatial 

arrangement and a means of reference to theenvironment.

• KINEMATICS - the analytical study of thegeometry of motion of a robot arm:

 – with respect to a fixed reference co-ordinate system – without regard to the forces or moments that cause

the motion.

Robot Kinematics

Point to point control

• a sequence of discrete points

• spot welding, pick-and-place,loading & unloading

Motion Control Methods

Page 3: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 3/23

2/8/201

Motion Control Methods

Continuous path control• follow a prescribed path, controlled-path motion

• Spray painting, Arc welding, Gluing

Two kinematics topics

Forward Kinematics (angles to position) What you are given: The length of each link

The angle of each joint

What you can find: The position of any point(i.e. it’s (x, y, z) coordinates)

Inverse Kinematics (position to angles)What you are given: The length of each link

The position of some point on the robot

What you can find: The angles of each joint needed to obtainthat position 

Page 4: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 4/23

Page 5: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 5/23

2/8/201

Kinematics

Trajectory Planning

Consider a robot with only one link.A

B

( 0 , t0)

( f , tf )

•Kinematics gives one

configuration for B.

•Choice of two trajectories

to get there.

•May wish to specify a via

point - maybe to avoid an

obstacle.

Kinematics

• For a robot system the inverse kinematic problem is one of the

most difficult to solve.

• The robot controller must solve a set of non-linear simultaneous

equations.

• The problems can be summarised as: –  The existence of multiple solutions.

 –  The possible non-existence of a solution.

 –  Singularities.

Inverse Kinematics

Page 6: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 6/23

2/8/201

Kinematics

Multiple Solutions

Goal

• This two link planar manipulator has

two possible solutions.

• This problem gets worse with more

‘Degrees of Freedom’. 

• Redundancy of movement.

Kinematics

Non Existence of Solution

Goal

• A goal outside the workspace of the

robot has no solution.

• An unreachable point can also be

within the workspace of the

manipulator - physical constraints.

• A singularity is a place of 

acceleration - trajectory tracking.

Page 7: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 7/23

2/8/201

Kinematic

 A X ˆ

 x

 A

 y

 z

 p

P p

 p

P A

 AY 

 A Z { A }

Position:

Kinematic

Orientation:

Rotation Matrix describes {B}relative to {A}

 A

 B R

Page 8: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 8/23

2/8/201

Kinematic

P A

333231

232221

131211

ˆˆˆ

r r r 

r r r 

r r r 

 Z Y  X  R B

 A

 B

 A

 B

 A A

 B

 A X ˆ

 AY 

 A Z 

 B Z ˆ

 BY  B X ˆ

 A B X  X r ˆˆ

11

 A B Y  X r  ˆˆ21 A B Z  X r  ˆˆ

31

Application of theDot Product

Kinematic

 A B A B A B

 A B A B A B

 A B A B A B

 B

 A

 B

 A

 B

 A A

 B

 Z  Z  Z Y  Z  X 

Y  Z Y Y Y  X 

 X  Z  X Y  X  X 

 Z Y  X  R

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆ

 B

 A X ˆ

 A

 B X ˆ

T  B

 A

 A

 B

 A

 B

 A

 B

 A

 B

 A

 B

 A

 B

 R Z Y  X 

 Z 

 X 

ˆˆˆ

ˆ

ˆ

ˆ

DirectionalCosines

DirectionalCosines

Unit vectors of {A} and 

relative to {B}

Unit vectors of {B}

and relative to {A}

Page 9: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 9/23

2/8/201

Kinematic

• For the matrix M,

 – Si M-1 = MT , M is orthogonal

• Inverse matrix is equal to its transponse.

1

3

  A B A B

  B A B A  R R I R R

1  A B T B

  B A A  R R R

Kinematic

• A point is attached to a rotating frame, the frame rotates60 degree about the OZ axis of the reference frame. Find thecoordinates of the point relative to the reference frame after therotation.

Example:

)2,3,4(uvwa

P B

 A X ˆ

 A Z B

W ˆ

 B

V ˆ

 B

U ˆ

 AY 

60

2

964.4

598.0

2

3

4

100

05.0866.0

0866.05.0

uvw

 A

 B xyz Raa

Page 10: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 10/23

2/8/201

1

Kinematic

Coordinate system or Frame:

• Position + orientation

 BORG

 AP

 A X ˆ

 A Z 

 B Z ˆ

 BY ˆ

 B X ˆ},{}{  BORG

 A A

 B P R B

 AY 

4 vectors 

Kinematic

Mapping from frame to frame:

Only Translation

PPP

B

 BORG

 A A

Only when the frame A and B have the same orientation 

Page 11: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 11/23

2/8/201

Kinematic

 A X ˆ

 A Z ˆ

 AY ˆ

 B Z ˆ

 BY ˆ

 B X ˆ

P B

P R

P

P

P

 Z Y  X 

P Z PY P X P

 Z PY P X P

 Z PY P X P

P

P

P

P

 B A

 B

 z

 y

 x

 B

 B

 A

 B

 A

 B

 A

 z B

 A

 y B

 A

 x B

 A A

 B

 A

 z B

 A

 y B

 A

 x

 B z B y B x

 z

 y

 x

 B

 B

]ˆˆˆ[

ˆˆˆ

ˆˆˆ

ˆˆˆ

Mapping from frame to frame:Only rotation

  A A B

 BP R P

Kinematic

Example:

 BY ˆ

 B X ˆ

 A X ˆ AY ˆP

 B

30 

30 

 A B Z  Z  ˆˆ

?

1

2

1

PPA B

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ cos( 30 ) cos(60 ) cos90

ˆ ˆ ˆ ˆ ˆ ˆ cos( 120 ) cos( 30 ) cos90

ˆ ˆ ˆ ˆ ˆ ˆ cos 90 cos 90 cos 0

  A A A A

  B B B B

  B A B A B A

  B A B A B A

  B A B A B A

  R X Y Z  

  X X Y X Z X  

  X Y Y Y Z Y  

  X Z Y Z Z Z  

Is it important the angle sign? 

Page 12: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 12/23

2/8/201

1

Kinematic

• A point is at in a body coordinate B(Oxyz). Find the finalglobal position of P after a rotation of 30 deg about the X-axis of theglobal coordinate A(OXYZ).

Example:)1,2,1( xyz

 BP

P B

 A X ˆ

 A Z 

 B z

 B y

 B x

 AY 

30

P RPB A

 B

 A

Kinematic

P B

 BORG

 AP

 A Z ˆ B Z ˆ  BY ˆ

 B X ˆ

 AY ˆ

P A

 A X ˆ BORG

 A B A

 B

 APP RP

Rotation + translation = Transform

Mapping from frame to frame:

Page 13: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 13/23

2/8/201

1

Kinematic

P RPPB A

 B BORG

 A A

110001

_

_

_

 z

 B

 y

 B

 x

 B

 z BORG

 A

 y BORG

 A A

 B

 x BORG

 A

 z

 A

 y

 A

 x

 A

P

P

P

P

P R

P

P

P

P

T  A

 B

Rotation + translation

(4x4) matrix is called homogenous transform

rotation 

translation 

  A A B

 BP T P

Kinematic

 A A A1

2

0

1

0

2

0 x

0 z

0 y

 A0

1 A1

2

1 x

1 z

1 y 2

 x

2 z

2 y

? A

i

i

1 Transformation matrix foradjacent coordinate frames

Chain product of successivecoordinate transformation matrices

Homogeneous Transformation

Page 14: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 14/23

2/8/201

1

Kinematic

1000

 z z z z

 y y y y

 x x x x

 pasn

 pasn

 pasn

 Ai

i

1  Ai

0

0 x 0 y

0 z

a

b

c

d

e

1 x

1 y

1 z

2 z

2 x

2 y

3 y3 x

3 z

4 z

4 y

4 x

5 x

5 y

5 z 1000

010

100

0001

0

1d a

ce A

1000

0001

100

010

1

2

d a

b

 A

• For the figure shown below, find the 4x4 homogeneous transformationmatrices and for i=1, 2, 3, 4, 5

1000

0100

001

010

0

2

ce

b

 A

Kinematic

0 x 0 y

0 z

a

b

c

d

e

1 x

1 y

1 z

2 z

2 x

2 y

3 y3 x

3 z

4 z

4 y

4 x

5 x

5

 y

5 z

1000

010

100

0001

0

1d a

ce A

1000001

100

010

0

3

a

c

b

 A

• Results:

1000

0100

001

010

0

2

ce

b

 A

1000

010

0001

0100

0

5a

 A

Page 15: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 15/23

2/8/201

1

Kinematic

• Rotation matrix representation needs 9elements to completely describe theorientation of a rotating rigid body.

• Any easy way?

10

1333P R

Euler Angles Representation 

Orientation Representation

Kinematic

• Euler Angles Representation ( , , )

 – Many different types

 – Description of Euler angle representations

Euler Angle I Euler Angle II Roll-Pitch-Yaw

Sequence about OZ axis about OZ axis about OX axis

of about OU axis about OV axis about OY axis

Rotations about OW axis about OW axis about OZ axis

Page 16: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 16/23

2/8/201

1

Kinematic

x

y

z

u'

v'

v "

w"

w'=

=u" 

v'"

u'"

w'"= 

Euler Angle I, Animated

Kinematic

• Euler Angle I

100

0cossin

0sincos

,

cossin0

sincos0

001

,

100

0cossin

0sincos

''

'

w

u z

 R

 R R

Orientation Representation

Page 17: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 17/23

2/8/201

1

Kinematic

cossincossinsin

sincos

coscoscos

sinsin

cossincos

cossin

sinsincoscossin

sincos

cossinsin

coscos

''' wu z R R R R

Resultant eulerian rotation matrix:Euler angle I

Kinematic

• Roll-Pitch-Yaw (fixed angles )

Orientation Representation

cossin0

sincos0

001

,

cos0sin

010

sin0cos

,

100

0cossin

0sincos

 X 

Y  Z 

 R

 R R

Page 18: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 18/23

2/8/201

1

Kinematic

• Matrix for fixed angles:

coscossincossin

sincos

cossinsin

coscos

sinsinsincossin

sinsin

cossincos

cossin

sinsincoscoscos

Roll-Pitch-Yaw Angles)()()(),,(,, X Y  Z  Z Y  X 

 A

 B R R R R

Kinematic

0 x 0 y

0 z

a

b

c

d

e

1 x

1 y

1 z

2 z

2 x

2 y

3 y3 x

3 z

4 z

4 y

4 x

5 x

5

 y

5 z

?0

3 A

• For the figure shown below, find the 4x4 homogeneous transformationmatrix for :

1000

001

100

010

0

3a

c

b

 A

Page 19: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 19/23

2/8/201

1

Forward Kinematic

The Situation: You have a robotic arm that starts out alignedwith the xo-axis.You tell the first link to move by 1 and thesecond link to move by 2.

The Quest: What is the position of the end of the roboticarm?

Solution: 1. Geometric Approach

This might be the easiest solution for the simple situation. However, notice thatthe angles are measured relative to the direction of the previous link. For robotswith more links and whose arm extends into 3 dimensions the geometry getsmuch more tedious.

2. Algebraic ApproachInvolves coordinate transformations.

Forward Kinematic

The Situation: Compute the P position with respect{Xo,Yo,Zo} by considering the Geometric andalgebraic approaches. The followinginformation is given:

L1 = 1 mL2 = 0.5 m

1 = 30

o

2 = 45o

o P

Page 20: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 20/23

2/8/201

2

Forward Kinematic

Denavit-Hartenberg Parameters 

IDEA: Each joint is assigned a coordinate frame. Using the Denavit-Hartenbergnotation, you need 4 parameters to describe how a frame ( i ) relates to a previousframe ( i -1 ).

THE PARAMETERS/VARIABLES:  , a , d ,

Z(i - 1) 

X(i -1) 

Y(i -1) 

( i -

1) 

a(i - 1

Z iY i

X i a id i

i

1) a (i-1)  Technical Definition: a(i-1) is the length of the perpendicular between the joint axes.The joint axes are the axes around which revolution takes place which are the Z(i-1)

and Z(i) axes. These two axes can be viewed as lines in space. The commonperpendicular is the shortest line between the two axis-lines and is perpendicularto both axis-lines.If the link is prismatic, then a (i-1)  is a variable, not a parameter.

Z(i - 1) 

X(i -1) 

Y(i -1) 

( i - 1) 

a (i - 1 ) 

Z iY i

X i a id  i

i

Denavit-Hartenberg Parameters 

Page 21: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 21/23

2/8/201

2

Denavit-Hartenberg Parameters 

2) (i-1) 

Technical Definition: Amount of rotation around the common perpendicular so thatthe joint axes are parallel (i.e. how much you have to rotate around the X(i-1) axis sothat the Z(i-1) is pointing in the same direction as the Zi axis. Positive rotation followsthe right hand rule).

3) d i  Technical Definition: The displacementalong the Zi axis needed to align the a (i-1)  common perpendicular to the a i   commonperpendicular. In other words,displacement along the Zi  to align the X(i-1) 

and Xi axes.

Z(i - 1) 

X(i -1)

 

Y(i -1) 

( i -

1) 

a (i - 1 ) 

Z iY 

iX i a  

id  

i

i

4) i 

Amount of rotation around the Z i axis needed to align the X(i-1) axis with the Xi axis.

Denavit-Hartenberg Parameters 

Example Problem:A three link arm starts out aligned in the x-axis. Each link has lengths l 1, l 2 , l 3 ,respectively. First, link one is rotated by 1 , and so on as the diagram suggests.Find the Homogeneous matrix to get the position of the yellow dot with respect tothe X0Y0 frame.

X2 

X3 Y2 

2  3 

X0 

Y0 

Page 22: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 22/23

2/8/201

2

Denavit-Hartenberg Parameters 

X2 

X3 Y2 

2  3 

X0 

Y0 

40003

15002

300001

33222

22111

1100

11

d  La

d  La

d a

d ai iiii

Denavit-Hartenberg Parameters 

X2 

X3 Y2 

2  3 

X0 

Y0 

1000

)cos(cossincossinsin

)sin(sincoscoscossin

0sincos

1111

1111

1

1

iiiiiii

iiiiiii

iii

i

id 

a

Transformation Matrix with Denavit-Hartenberg parameters

Page 23: Mod 02 Robotica Ind 02(1)

8/2/2019 Mod 02 Robotica Ind 02(1)

http://slidepdf.com/reader/full/mod-02-robotica-ind-021 23/23