Top Banner
Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DEAC0494AL85000. Problem Sandia National Laboratories Christopher G. Valicka (presenting), William E. Hart, M. D. Rintoul, Scott A. Mitchell, Eric L. Pollard, Simon X. Zou, Stephen Rowe Preliminary Results Approach Significance MixedInteger Formulations for Constellation Scheduling SAND2015 Remote sensing systems have expanded the set of capabilities critical to national security. Constellations of agile, highfidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. Advanced scheduling tools are lacking and operators are overburdened. Nowhere is this more costly than in timecritical scheduling decisions. Assisted decisionmaking through identification and comparison of alternative schedules remains a challenging problem applicable across remote sensing systems. Using the Pyomo optimization modeling tool, we have developed software in Python and C++ that poses and solves mixedinteger models for foundational problems in scheduling constellations of remote sensors: Scheduling where activity demands outnumber available sensor resources Optimize according various criteria: Activity priority, Highfidelity measures of sensor performance Allow for customer tuning of criteria for acceptable activity performance Create schedules that obey periodic calibration and sensor safety constraints Sensor starepoint (footprint) placement optimization within individual activities and across geospatially separate activities Optimization of subfootprint sizing and placement, according to sensor and bandwidth constraints Optimization of starepoint placement according to optimal subfootprint solutions Scheduling to minimize disruptions caused by adhoc activities and weather Framework designed and implemented to carefully trade schedule optimality for timely decision support Support for arbitrary numbers of sensors and activities and variable precision timesteps Framework is adaptable to changing schedule objectives, adhoc activities, and periodic calibration activities Mixedinteger model provides access to valuable analytics Computed four sensor schedule. Darker blues denote higher activity priority. Calibration activities are black. Accessible draw band pass and cloud database Receiver Operating Characteristics (ROCs). Sensor Performance measures: 1. Probability of Detect (PD) 2. Geolocation Accuracy 3. Closely Spaced Objects (CSO) 4. Access 5. Geometric Coverage Screenshots from dynamic sensor footprint visualization. Examples of optimal (circular) footprint placements for individual activities. Footprint radius denoted in green, coverage points denoted in red.
1

Mixed2Integer&Formulations&for&Constellation& Schedulingsamitch/_assets/documents/pdfs...wholly&owned&subsidiary&of&Lockheed&Martin&Corporation,&for&the&U.S.&Department&of&Energy’s&National&Nuclear&

Feb 01, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Sandia  National  Laboratories  is  a  multi-‐program  laboratory  managed  and  operated  by  Sandia  Corporation,  a  wholly  owned  subsidiary  of  Lockheed  Martin  Corporation,  for  the  U.S.  Department  of  Energy’s  National  Nuclear  

    Security  Administration  under  contract  DE-‐AC04-‐94AL85000.

    Problem

    Sandia  National  LaboratoriesChristopher  G.  Valicka  (presenting),  William  E.  Hart,  M.  D.  Rintoul,  Scott  A.  Mitchell,  Eric  L.  Pollard,  Simon  X.  Zou,  Stephen  Rowe

    Preliminary  Results  

    Approach

    Significance

    Mixed-‐Integer  Formulations  for  Constellation  Scheduling

    SAND2015-‐

    Remote  sensing  systems  have  expanded  the  set  of  capabilities  critical  to  national  security.  Constellations  of  agile,  high-fidelity  sensing  systems  and  growing  mission  applications  have  exponentially  increased  the  set  of  potential  schedules.  Advanced  scheduling  tools  are  lacking  and  operators  are  overburdened.  Nowhere  is  this  more  costly  than  in  time-critical  scheduling  decisions.  Assisted  decision-making  through  identification  and  comparison  of  alternative  schedules  remains  a  challenging  problem  applicable  across  remote  sensing  systems.

    Using  the  Pyomo optimization  modeling  tool,  we  have  developed  software  in  Python  and  C++ that  poses  and  solves  mixed-integer  models  for  foundational  problems  in  scheduling  constellations  of  remote  sensors:

    Ø Scheduling  where  activity  demands  outnumber  available  sensor  resources

    Ø Optimize  according  various  criteria:² Activity  priority,² High-fidelity  measures  of  sensor  

    performance

    Ø Allow  for  customer  tuning  of  criteria  for  acceptable  activity  performance

    Ø Create  schedules  that  obey  periodic  calibration  and  sensor  safety  constraints

    Ø Sensor  stare-point  (footprint)  placement  optimization  within  individual  activities  and  across  geo-spatially  separate  activities

    Ø Optimization  of  sub-footprint  sizing  and  placement,  according  to  sensor  and  bandwidth  constraints

    Ø Optimization  of  stare-point  placement  according  to  optimal  sub-footprint  solutions

    Ø Scheduling  to  minimize  disruptions  caused  by  adhocactivities  and  weather

    • Framework  designed  and  implemented  to  carefully  trade  schedule  optimality  for  timely  decision  support• Support  for  arbitrary  numbers  of  sensors  and  activities  and  variable  precision  time-‐steps• Framework  is  adaptable  to  changing  schedule  objectives,  adhoc activities,  and  periodic  calibration  activities• Mixed-‐integer  model  provides  access  to  valuable  analytics

    Computed  four  sensor  schedule.  Darker  blues  denote  higher  activity  priority.  

    Calibration  activities  are  black.

    Accessible  draw  band  pass  and  cloud  database  Receiver  Operating  Characteristics  (ROCs).

    Sensor  Performance  measures:

    1. Probability  of  Detect  (PD)

    2. Geolocation  Accuracy

    3. Closely  Spaced  Objects  (CSO)

    4. Access

    5. Geometric  Coverage

    Screenshots  from  dynamic  sensor  footprint  visualization.  

    Examples  of  optimal  (circular)  footprint  placements  for  individual  activities.  Footprint  radius  denoted  in  green,  

    coverage  points  denoted  in  red.