Top Banner

of 27

MIT3_40JF09_lec19

Jun 04, 2018

Download

Documents

taknev
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/13/2019 MIT3_40JF09_lec19

    1/27

    3.40 Lecture Summary 11/16/09

    Better, Faster, Stronger

    How to Engineer Metals

    With Thermo & Kinetics

  • 8/13/2019 MIT3_40JF09_lec19

    2/27

    Contributions to Precipitation

    Hard Particle Size

    Shearablility

    Coherency

    Ordering

    Modulus

    Volume Fraction

    ening

    rrc-b

    Cohe

    Lattic

    Coherent with Strain

    Courtesy of DoITPoMS, University of Cambridge.

    Used with permission.

    rency:Please see Fig. 3.47c in Porter, D.,and K. Easterling.

    e strainPhase Transformations in Metals and AlloysBoca Raton, FL: CRC Press, 2009.

    coherentincoherent

    http://www.matsceng.ohio-state.edu/mse205/lectures/chapter10/index_chap10.htm

    D. Porter, K. Easterling. Phase transformations in metals and alloys. CRC Press 2000.

    Courtesy of Krystyn Van Vliet. Used with permission.

    cutting

    bowing

    rc-b

    rc-i

    http://www.matsceng.ohio-state.edu/mse205/lectures/chapter10/index_chap10.htmhttp://www.matsceng.ohio-state.edu/mse205/lectures/chapter10/index_chap10.htm
  • 8/13/2019 MIT3_40JF09_lec19

    3/27

    Contributions to Precipitation

    Ha Particle Size

    Shearablility

    Coherency

    Ordering

    Modulus

    Volume Fraction

    rdening

    rc-irc-b

    How do we engineer metals for maximum strength?

    Simple: Large number of particles with r=rc-b

    Courtesy of Krystyn Van Vliet. Used with permission.

    coherentincoherent

    http://www.matsceng.ohio-state.edu/mse205/lectures/chapter10/index_chap10.htm

    rc-b

    rc-i

    http://www.matsceng.ohio-state.edu/mse205/lectures/chapter10/index_chap10.htmhttp://www.matsceng.ohio-state.edu/mse205/lectures/chapter10/index_chap10.htm
  • 8/13/2019 MIT3_40JF09_lec19

    4/27

    Thermodynamics: Phase Diagrams

    W. Hosford. Physical Metallurgy CRC Press, 2005

    What do we want?Intermetallic:

    Ordered phaseLarge Vf

    Figure by MIT OpenCourseWare. Adapted from Vol. 3,

    449.57oC

    410.9oC

    326.8oC

    924oC

    L

    Temperatur

    eoC

    Pb Te

    1009080706050403020100

    1009080706050403020100

    Weight percent tellurium

    83.4

    Atomic percent tellurium

    200

    300

    400

    500

    600

    327.502oC

    700

    800

    900

    1000

    PbTe

    C0

    T1

    T2

    Alloy Phase Diagrams, ASM Handbook.Materials Park, OH: ASM International, 2009.

    Please see "Microstructural Development: Basic Requirements for Aging.

    aluMATTER, University of Liverpool."

    http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=70&pageid=-1072490953http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=70&pageid=-1072490953
  • 8/13/2019 MIT3_40JF09_lec19

    5/27

    iVf i ii

    W. Hosford. Physical Metallurgy CRC Press, 2005

    Thermodynamics: Phase Diagrams

    Figure by MIT OpenCourseWare. Adapted from Vol. 3,

    449.57oC

    410.9oC

    326.8oC

    924oC

    L

    TemperatureoC

    Pb Te

    1009080706050403020100

    1009080706050403020100

    Weight percent tellurium

    83.4

    Atomic percent tellurium

    200

    300

    400

    500

    600

    327.502oC

    700

    800

    900

    1000

    PbTe

    C0

    T1

    T2 (i) (ii)

    Alloy Phase Diagrams, ASM Handbook.Materials Park, OH: ASM International, 2009.

    Please see "Microstructural Development: Basic Requirements for Aging. aluMATTER, University of Liverpool."

    Tie-Line Construction

    http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=70&pageid=-1072490953http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=70&pageid=-1072490953
  • 8/13/2019 MIT3_40JF09_lec19

    6/27

    What about particle size: Kinetics

    What do we want?

    Large Vfof optimum particle size

    http://www.uic.edu/classes/cemm/cemm470/Heat%20Treatment%20of%20Steels%20and%20Metallic%20Materials%5B1%5D.pdf

    Image removed due to

    Please see Fig. 12-7 in

    and Pradeep Prabhakar

    The Science and Engin

    Stamford, CT: Cengag

    Temperature

    Time

    T1

    T2

    T0

    Solution Heat

    Treatment

    Precipitation Heat

    Treatment

    Quench

    copyright restrictions.

    Askeland, Donald R.,

    Phul.'

    eering of Materials.

    e Learning, 2008.

    Used with permission. Please also see "Microstructural Development: Stages of Heat Treatment."

    aluMATTER, University of Liverpool.

    http://www.uic.edu/classes/cemm/cemm470/Heat%20Treatment%20of%20Steels%20and%20Metallic%20Materials%5B1%5D.pdfhttp://aluminium.matter.org.uk/content/html/eng/default.asp?catid=70&pageid=-1542434388http://www.uic.edu/classes/cemm/cemm470/Heat%20Treatment%20of%20Steels%20and%20Metallic%20Materials%5B1%5D.pdfhttp://aluminium.matter.org.uk/content/html/eng/default.asp?catid=70&pageid=-1542434388
  • 8/13/2019 MIT3_40JF09_lec19

    7/27

    rc-irc-b

    coherentincoherent

    Precipitation Hardening: Kinetics

    Vf

    rave

    t

    t

    Inc.

    rnuc

    tr

    Courtesy of Krystyn Van Vliet. Used with permission.

  • 8/13/2019 MIT3_40JF09_lec19

    8/27

    rc-irc-b

    coherentincoherent

    Vf

    rave

    t

    t

    Inc. Nuc.

    rnuc

    Vr

    Precipitation Hardening: Kinetics

    Courtesy of Krystyn Van Vliet. Used with permission.

  • 8/13/2019 MIT3_40JF09_lec19

    9/27

    rc-irc-b

    coherentincoheren

    Vf

    rave

    t

    t

    rc-b

    r~t1/2

    Inc. Nuc. Growth

    rnuc

    tVrVr

    Vf,eq

    Precipitation Hardening: Kinetics

    Large contribution to strengthening:Volume fraction and radius increasing

    Courtesy of Krystyn Van Vliet. Used with permission.

  • 8/13/2019 MIT3_40JF09_lec19

    10/27

    Vf

    rave

    t

    t

    rc-b

    rc-i

    r~t1/2

    r~t1/3

    Inc. Nuc. Growth Ostwald ripening

    rnuc

    Via Thermo.

    tie lineNot impingement!

    tVrV rr

    rc-irc-b

    coherentincoherent

    Precipitation Hardening: Kinetics

    Vf,eq

    Sweet Spot for Max Strengthening:

    rc-b & Vf,,eq

    Courtesy of Krystyn Van Vliet. Used with permission.

  • 8/13/2019 MIT3_40JF09_lec19

    11/27

    Gibbs-Thompson Effect: Ostwald

    ripening

    Curvature affects free energy diagram solubility in smaller particles

    Established concentration gradient Large grow, small shrink

    R. Balluffi, S. Allen, C. Carter. Kinetics of Materials. Hoboken, NJ: J. Wiley & sons. 2005 W. Hosford. Physical Metallurgy CRC Press, 2005

    Images removed due to copyright restrictions.

    Please see: Fig. 15.1c in Balluffi, Robert W., et al.Kinetics of Materials.

    Hoboken, NJ: Wiley-Interscience, 2005.

    Fig. 10.20 in Hosford, William F.Physical Metallurgy. Boca Raton, FL: CRC Press, 2005.

  • 8/13/2019 MIT3_40JF09_lec19

    12/27

    Time-Temperature-Transformation

    Diagram (TTT)

    Plots representing the level of transformation (in

    %) during an isothermal process from non-equilibrium conditions to equilibrium vs. time

    TTT diagram

    Please see "Underlying Metallurgy: Transformation Diagrams(CCT & TTT)."SteelMATTER. University of Liverpool, 2000.

    http://www.matter.org.uk/steelmatter/metallurgy/7_1_2.htmlhttp://www.matter.org.uk/steelmatter/metallurgy/7_1_2.htmlhttp://www.matter.org.uk/steelmatter/metallurgy/7_1_2.htmlhttp://www.matter.org.uk/steelmatter/metallurgy/7_1_2.htmlhttp://www.matter.org.uk/steelmatter/metallurgy/7_1_2.htmlhttp://www.matter.org.uk/steelmatter/metallurgy/7_1_2.html
  • 8/13/2019 MIT3_40JF09_lec19

    13/27

    TTT i d

  • 8/13/2019 MIT3_40JF09_lec19

    14/27

    TTT continued

    Image from Wikimedia Commons,http://commons.wikimedia.org.

    Growth dominated

    Nucleation dominated

    http://commons.wikimedia.org/http://commons.wikimedia.org/http://commons.wikimedia.org/
  • 8/13/2019 MIT3_40JF09_lec19

    15/27

    How does strength evolves with time at

    constant T?

    1) Bell-shape curve

    2) Fastest at Tnose

  • 8/13/2019 MIT3_40JF09_lec19

    16/27

    Strength vs. time

    Tnose= T3

  • 8/13/2019 MIT3_40JF09_lec19

    17/27

    How does strength evolves with time at

    constant T?

    1) Bell-shape curve

    2) Fastest at Tnose

    3) If T is high, Vf is getting smaller (lever rule) >few precipitates + before coarsening > rc/b

  • 8/13/2019 MIT3_40JF09_lec19

    18/27

    http://www.doitpoms.ac.uk/tlplib/phase-diagrams/lever.php

    Temperatu

    re(C)

    Composition (%)

    Phase Diagram

    Courtesy of DoITPoMS, University of Cambridge. Used with permission.

    http://www.doitpoms.ac.uk/tlplib/phase-diagrams/lever.phphttp://www.doitpoms.ac.uk/tlplib/phase-diagrams/lever.php
  • 8/13/2019 MIT3_40JF09_lec19

    19/27

    http://upload.wikimedia.org/wikipedia/en/6/63/Strengtheningg.png

    if T is high, at

    the end of growth

    http://upload.wikimedia.org/wikipedia/en/6/63/Strengtheningg.pnghttp://upload.wikimedia.org/wikipedia/en/6/63/Strengtheningg.png
  • 8/13/2019 MIT3_40JF09_lec19

    20/27

    Strength vs. time

    Tnose= T3

    T4 >T3T4 > Tnose

    Tnose= T3

  • 8/13/2019 MIT3_40JF09_lec19

    21/27

    How does strength evolves with time at

    constant T?

    1) Bell-shape curve

    2) Fastest at Tnose

    3) If T is high, Vf is getting smaller (lever rule) >few grain + before coarsening > rc/b

    4) If T is low, nucleation is dominating, lots of

    small grain: < rc/b

  • 8/13/2019 MIT3_40JF09_lec19

    22/27

    http://upload.wikimedia.org/wikipedia/en/6/63/Strengtheningg.png

    if T is low, at

    the end of growth

    http://upload.wikimedia.org/wikipedia/en/6/63/Strengtheningg.pnghttp://upload.wikimedia.org/wikipedia/en/6/63/Strengtheningg.png
  • 8/13/2019 MIT3_40JF09_lec19

    23/27

  • 8/13/2019 MIT3_40JF09_lec19

    24/27

  • 8/13/2019 MIT3_40JF09_lec19

    25/27

    Strength vs. time

    Tnose= T3

    T1 < T3RT=T1

    T4 >T3

    T2: optimal for strengthening,experimentally a little above

    Tnose

  • 8/13/2019 MIT3_40JF09_lec19

    26/27

    Refinements Take into account aging during service

    Non metallic precipitates e.g. VC in Fe-V-C

    Core-shell e.g. Zr around Al3Sc

    Particle alignment (coherency stress) e.g. Ni3Al inNi-Al

    Extrinsic nanoparticles seeding > no growth, noshear

    Zr shell impedes diffusion thus growth

    Al3Sc precipitate

    Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

    http://www.sciencedirect.com/http://www.sciencedirect.com/
  • 8/13/2019 MIT3_40JF09_lec19

    27/27

    MIT OpenCourseWarehttp://ocw.mit.edu

    3.40J / 22.71J / 3.14 Physical Metallurgy

    Fall 2009

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/http://ocw.mit.edu/terms