Top Banner

of 44

MIT3_021JS11_P2_L4

Jun 04, 2018

Download

Documents

chethugowda7
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/13/2019 MIT3_021JS11_P2_L4

    1/44

  • 8/13/2019 MIT3_021JS11_P2_L4

    2/44

    4 From Atoms to Solids

    Part II Outline1. Its A Quantum World:The Theory of

    Quantum Mechanics

    2. Quantum Mechanics: Practice MakesPerfect3. From Many-Body to

    Single-Particle; Quantum Modeling ofMolecules

    7. Nanotechnology8. Solar Photovoltaics: Converting

    Photons into Electrons9. Thermoelectrics: Converting

    Heat into Electricity

    10.Solar Fuels: Pushing Electrons up5. Quantum Modeling of Solids: Basic

    a Hill

    11.Hydrogen Storage: the Strengthof Weak InteractionsProperties

    6. Advanced Prop. of Materials:What 12. Reviewelse can we do?

    4. From Atoms to Solids

  • 8/13/2019 MIT3_021JS11_P2_L4

    3/44

    Motivation

    ?

  • 8/13/2019 MIT3_021JS11_P2_L4

    4/44

    Lesson outline

    ReviewPeriodic potentialsBlochs theoremEnergy bands

  • 8/13/2019 MIT3_021JS11_P2_L4

    5/44

    r1

    Review: Next? Helium

    H=Ee-

    H1 +H2 +W(r1,r2) =E(r1,r2)

    T1 +V1 +T2 +V2 +W (r1,r2) =E(r1,r2)

    +

    e-

    r2

    r12

    2

    2 2 2 2 2e e 2m1 40r1 2m2 40r2

    +e2

    40r12(r1,r2) =E(r1,r2)

    cannot be solved analytically problem!

  • 8/13/2019 MIT3_021JS11_P2_L4

    6/44

    Review:The Multi-Electron Hamiltonian2 e2Remember

    the good old days of the

    1-electron H-atom??

    Theyre

    over!

    H =E 2m2 40r

    (r) =E(r)

    N N N n N n n nH= "% h2 #2Ri+ 1%%ZiZje2 "h2%#2ri "%% Zie2 + 1%% e2

    i=12Mi 2i=1j=1Ri"Rj 2m i=1 i=1j=1Ri"rj 2i=1j=1 ri"rj

    i$j i$jkinetic energy of ions kinetic energy of electrons electron-electron interaction

    potential energy of ions electron-ion interaction

    H R1,...,RN;r1,...,rn( )"R1,...,RN;r1,...,rn( ) = E"R1,...,RN;r1,...,rn( )Multi-Atom-Multi-Electron Schrdinger Equation

  • 8/13/2019 MIT3_021JS11_P2_L4

    7/44

    Born-Oppenheimer Approximation

    Electrons and nucleias separate systems

    H= "2

    h

    m2$n #r2i "$N$n

    R

    Z

    ii

    "e2rj

    +

    2

    1$n$nri

    e

    "2rji=1 i=1j=1 i=1j=1

    i%j

  • 8/13/2019 MIT3_021JS11_P2_L4

    8/44

    Born-Oppenheimer ApproximationElectrons and nuclei

    as separate systemsH= "h2$n #2ri "$N$n Zie2 + 1$n$n e2

    2mi=1 i=1j=1Ri"rj 2i=1

    ij%=1jri"rj

    ... but this is anapproximation!

    electrical resistivity

    superconductivity

    ....

  • 8/13/2019 MIT3_021JS11_P2_L4

    9/44

    Review: Solutions

  • 8/13/2019 MIT3_021JS11_P2_L4

    10/44

  • 8/13/2019 MIT3_021JS11_P2_L4

    11/44

    wavefunc

    tion:

    complicate

    d!

    electrondensieasy!

    ty:

    Review: DFT= r1,r2, . . . ,rN

    Walter KohnDFT, 1964

    n=n r

    All aspects of the electronic structure of a systemof interacting electrons, in the ground state, inan external potential, are determined by n(r)

  • 8/13/2019 MIT3_021JS11_P2_L4

    12/44

    Review: DFTion

    source unknown. All rights reserved.This content is excluded from our CreativeCommons license. For more information,see http://ocw.mit.edu/fairuse.

    electron density The ground-state energy is a

    functional

    of the electron density.

    E n =T n +Vii+Vie n +Vee n kinetic ion-electron

    ion-ion electron-electron

    The functional is minimal at the exactground-state electron density n(r)The functional exists... but it is unknown!

    http://ocw.mit.edu/fairusehttp://ocw.mit.edu/fairuse
  • 8/13/2019 MIT3_021JS11_P2_L4

    13/44

    Review: DFTE n =T n +Vii+Vie n +Vee n

    kinetic ion-ion ion-electron electron-electron

    2electron density n(r) =|i(r)|i

    groundstate =minE[n]

    Find the wave functions that minimize theenergy using a functional derivative.

  • 8/13/2019 MIT3_021JS11_P2_L4

    14/44

    Review: DFTFinding the minimum leads to

    Kohn-Sham equations

    ion potential Hartree potential exchange-correlation

    potential

    equations for non-interacting electrons

  • 8/13/2019 MIT3_021JS11_P2_L4

    15/44

    Review: DFT

    Only one problem: vxcnot known!approximations necessary

    local density general gradient

    approximation approximation

    LDA GGA

  • 8/13/2019 MIT3_021JS11_P2_L4

    16/44

    3.021jIntroductionto ModelingandSimulation N. Marzar MIT, May2003)

    Iterations to selfconsistency

    Review: Self-consistent cycleKohn-Sham equations

    -

    n(r)=i

    |i(r)|2

    s

    cfloop

  • 8/13/2019 MIT3_021JS11_P2_L4

    17/44

    Review: DFT calculationsscfloop

    total energy = -84.80957141 Rytotal energy = -84.80938034 Rytotal energy = -84.81157880 Rytotal energy = -84.81278531 Rytotal energy = -84.81312816 Ry exiting loop;total energy = -84.81322862 Ry result precise enoughtotal energy = -84.81323129 Ry

    At the end we get: 1) electronic charge density2) total energy

  • 8/13/2019 MIT3_021JS11_P2_L4

    18/44

    Review: DFT calculationstotal energy = -84.80957141 Rytotal energy = -84.80938034 Rytotal energy = -84.81157880 Rytotal energy = -84.81278531 Rytotal energy = -84.81312816 Ry exiting loop;total energy = -84.81322862 Ry result precise enoughtotal energy = -84.81323129 Ry

    scfloop

    At the end we get:1) electronic charge density

    2) total energy

    Structure Elastic Vibrational ...

    constants properties

  • 8/13/2019 MIT3_021JS11_P2_L4

    19/44

    Review: Basis functionsMatrix eigenvalue equation:

    =ciii

    expansion in=

    orthonormalized basisfunctions

    cii=Ecii

    i idrjH

    icii=E

    drj

    icii

    iHjici=EcjHc=Ec

  • 8/13/2019 MIT3_021JS11_P2_L4

    20/44

    Review: Plane waves asbasis functionsplane wave expansion: (r) =cjeGjri

    j plane waveCutoff for a maximum G is necessary and results in a finite basis set.

    Plane waves are periodic,thus the wave function is periodic!

    periodic crystals: atoms, molecules:Perfect!!! (next lecture) be careful!!!

    Image by MIT OpenCourseWare.

  • 8/13/2019 MIT3_021JS11_P2_L4

    21/44

    From atoms to solids

    The ground state electron configuration of a system is constructed by putting the

    available electrons, two at a time (Pauli principle), into the states of lowest energy

    Solid EnergyAtom Molecule

    Antibonding p

    p

    Antibonding s

    Bonding ps

    Bonding s

    Conduction band

    from antibonding

    p orbitals

    Conduction band

    from antibonding

    s orbitals

    Valence band from

    p bonding orbitals

    Valence band from

    s bonding orbitals

    k

    Image by MIT OpenCourseWare.

  • 8/13/2019 MIT3_021JS11_P2_L4

    22/44

    nrgy

    Energy bands

    Metal Insulator Semiconductor

    occupied

    empty

    energy

    gap

    NB: boxes = allowed energy regions

  • 8/13/2019 MIT3_021JS11_P2_L4

    23/44

    Crystal symmetriesA crystal is built upof a unit cell and

    periodic replicas thereof.

    lattice unit cellImage of M. C. Escher's "Mobius with Birds" removed due to copyright restrictions.

  • 8/13/2019 MIT3_021JS11_P2_L4

    24/44

    C l i

  • 8/13/2019 MIT3_021JS11_P2_L4

    25/44

    Crystal symmetriesBravais

    Lattice

    Triclinic

    Monoclinic

    Orthorhombic

    Tetragonal

    Trigonal

    Cubic

    Hexagonal

    ParametersSimple

    (P)

    Volume

    Centered (I)

    Base

    Centered (C)

    Face

    Centered (F)

    a1= a2= a3

    12= 23= 31

    a1= a2= a3

    23= 31= 900

    12= 900

    a1= a2= a312= 23= 31 = 90

    0

    a1= a2= a312= 23= 31 = 90

    0

    a1= a2= a312= 120

    0

    23= 31= 900

    a1= a2= a3

    12= 23= 31 = 900

    a1= a2= a312= 23= 31 < 120

    0

    a3

    a1

    a2

    4 Lattice Types

    7CrystalClasses

    Image by MIT OpenCourseWare.

  • 8/13/2019 MIT3_021JS11_P2_L4

    26/44

    Lattice and basissimplecubic

    facecentered

    cubic

    basis

  • 8/13/2019 MIT3_021JS11_P2_L4

    27/44

    The inverse latticeThe real space lattice is described by three basis vectors:

    R =n1a1+n2a2+n3a3

    The inverse lattice is described by three basis vectors:G =m1b1+m2b2+m3b3

    i Gj(r) =cjei reGR = 1j

    automatically periodic in R!

  • 8/13/2019 MIT3_021JS11_P2_L4

    28/44

    The inverse latticereal space lattice (BCC) inverse lattice (FCC)

    xy

    a

    z

    a1a2

    a3

    Image by MIT OpenCourseWare.

  • 8/13/2019 MIT3_021JS11_P2_L4

    29/44

    The Brillouin zone

    inverse lattice

    The Brillouin zone is a specialunit cell of the inverse lattice.

    Image by Gang65on Wikimedia Commons. License: CC-BY.This content is excluded from our Creative Commons license.For more information, see http://ocw.mit.edu/fairuse.

    http://en.wikipedia.org/wiki/File:Brillouin_zone.svghttp://ocw.mit.edu/fairusehttp://ocw.mit.edu/fairusehttp://en.wikipedia.org/wiki/File:Brillouin_zone.svg
  • 8/13/2019 MIT3_021JS11_P2_L4

    30/44

    The Brillouin zone

    Brillouin zone of the FCC lattice

  • 8/13/2019 MIT3_021JS11_P2_L4

    31/44

    Periodic potentialsmetallic sodium

    V(r)

    Dr. Helmut Foll. All rights reserved. This content is

    2m2+V(r)

    =E

    excluded from our Creative Commons license.For more information, see http://ocw.mit.edu/fairuse.

    R R R

    http://ocw.mit.edu/fairusehttp://ocw.mit.edu/fairuse
  • 8/13/2019 MIT3_021JS11_P2_L4

    32/44

    l

    Periodic potentialsIt becomes much easier if you use the

    periodicity of the potential!V(r) =V(r+R)

    attice vector

    Blochs theorem k r) =eikruk(r)(NEW quantum number k that

    lives in the inverse lattice!

    uk(r) =uk(r+R)

    P d l

  • 8/13/2019 MIT3_021JS11_P2_L4

    33/44

    Periodic potentialsBlochs theoremk(r) =eikruk(r)uk(r) =uk(r+R)

    = 2/k

    k(r) = eik.r

    k = 0

    u(r)

    k = /a

    a

    Image by MIT OpenCourseWare.

  • 8/13/2019 MIT3_021JS11_P2_L4

    34/44

    Periodic potentials

    Results of the Bloch theorem:

    k(r+R) =k(r)eikr2 2 charge density|k(r+R)| =|k(r)| is lattice periodic

    k r

    k+G r

    Ek=Ek+Gif solution also solution

    with

  • 8/13/2019 MIT3_021JS11_P2_L4

    35/44

    Periodic potentialsSchrdinger certain quantumequation symmetry number

    hydrogen spherical n,l,m(r)atom symmetry[H,L ] =HL L H = 0

    [H,Lz] = 0

    periodic translational n,k rsolid symmetry[H,T] = 0

  • 8/13/2019 MIT3_021JS11_P2_L4

    36/44

    The band structureDifferent wave functions can satisfy the Bloch theorem for the same k:

    eigenfunctions and eigenvalues labelled with kand the index n

    energy bands

  • 8/13/2019 MIT3_021JS11_P2_L4

    37/44

    Th b d

  • 8/13/2019 MIT3_021JS11_P2_L4

    38/44

    The band structure

    energy levels

    in the Brillouin zone

    Figure by MIT OpenCourseWareL

    EC

    EV

    X1

    -10

    0

    6

    E(eV)

    S1

    X

    k

    U,KG G

    G1

    G'25

    G15

    D SL

    Silicon

    Image by MIT OpenCourseWare.

    occupied

    unoccupied

  • 8/13/2019 MIT3_021JS11_P2_L4

    39/44

  • 8/13/2019 MIT3_021JS11_P2_L4

    40/44

    The band structurefolding of the band structure

    3 2

    k

    kx

    a

    3aa

    2aa

    a

    k

    kx

    3 2 a

    3aa

    2aa

    a

    Image by MIT OpenCourseWare.

  • 8/13/2019 MIT3_021JS11_P2_L4

    41/44

    The band structurereal band structure

    k

    kx

    k

    kx3 2 a

    3aa

    2aa

    a

    3 2 a

    3aa

    2aa

    a

    Image by MIT OpenCourseWare.

  • 8/13/2019 MIT3_021JS11_P2_L4

    42/44

    Review

    ReviewPeriodic potentialsBlochs theoremEnergy bands

  • 8/13/2019 MIT3_021JS11_P2_L4

    43/44

    LiteratureCharles Kittel, Introduction to Solid State

    Physics

    Richard M. Martin, Electronic Structurewikipedia,solid state physics,condensed

    matter physics, ...

    Simple band structure simulations:http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure

    http://phet.colorado.edu/simulations/sims.php?sim=Band_Structurehttp://phet.colorado.edu/simulations/sims.php?sim=Band_Structurehttp://phet.colorado.edu/simulations/sims.php?sim=Band_Structurehttp://phet.colorado.edu/simulations/sims.php?sim=Band_Structurehttp://phet.colorado.edu/simulations/sims.php?sim=Band_Structurehttp://phet.colorado.edu/simulations/sims.php?sim=Band_Structurehttp://phet.colorado.edu/simulations/sims.php?sim=Band_Structure
  • 8/13/2019 MIT3_021JS11_P2_L4

    44/44

    MIT OpenCourseWarehttp://ocw.mit.edu

    3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modeling and SimulationSpring 2011

    For information about citing these materials or our Terms of use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/