Top Banner

of 26

MIT2_854F10_inv.pdf

Jul 07, 2018

Download

Documents

jegosss
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/19/2019 MIT2_854F10_inv.pdf

    1/78

    Inventory

    Lecturer: Stanley B. Gershwi

  • 8/19/2019 MIT2_854F10_inv.pdf

    2/78

    Storage

    • Storage is fundamental in nature, manageengineering.

    ⋆ In nature, energy is stored. Life can only exist if

    acquisition of energy can occur at a different time

    the expenditure of energy.

    ⋆ In management, products are stored.

    ⋆ In engineering, energy is stored (springs, batteri

    capacitors, inductors, etc.); information is stored

    hard disks); water is stored (dams and reservoir

  • 8/19/2019 MIT2_854F10_inv.pdf

    3/78

    Storage

    • The purpose of storage is to allow systemssurvive even when important events are

    unsynchronized. For example,⋆ the separation in time from the acquisition or pro

    something and its consumption; and

    ⋆ the occurrence of an event at one location (such machine failure or a power surge) which can prev

    performance or do damage at another.

    • 

    Storage improves system performance bydecoupling parts of the system from one a

  • 8/19/2019 MIT2_854F10_inv.pdf

    4/78

    Storage

    • Storage decouples creation/acquisition an

    emission.

    • It allows production systems (of energy or

    be built with capacity less than the peak de

    • 

    It reduces the propagation of disturbancesreduces instability and the fragility of comp

    expensive systems.

  • 8/19/2019 MIT2_854F10_inv.pdf

    5/78

    Manufacturing InveStorage

    Motives/bene

    • Reduces the propagation of disturbances

    machine failures).

    • 

    Allows economies of scale:⋆ volume purchasing

    ⋆ set-ups

    • Helps manage seasonality and limited cap

    • Helps manage uncertainty:

    ⋆ Short term: random arrivals of customers⋆ Long term: Total demand for a product n

  • 8/19/2019 MIT2_854F10_inv.pdf

    6/78

    Manufacturing InveStorage

    Costs

    • 

    Financial: raw materials paid for, but no re

    comes in until item is sold.

    • 

    Demand risk: item may not be sold due to example)

    ⋆ time value (newspaper)

    ⋆ obsolescence

    ⋆ fashion

    • 

    Holding cost (warehouse space)•Damage/theft/spoilage/loss

  • 8/19/2019 MIT2_854F10_inv.pdf

    7/78

    NewsvendorProblem

    ... formerly called the “Newsboy Problem”.

    Motive: demand risk.

    Newsguy buys x newspapers at c dollars per paper (Demand for newspapers, at price r > c is w. Unsold

    newspapers are redeemed at salvage price s < c.

    Demand W is a continuous random variable with disfunction F (w) = prob(W ≤ w); f (w) = dF (w)/d

    all w.

    Note that w ≥ 0 so F (w) = 0 and f (w) = 0 for w

    Problem: Choose x to maximize expected

  • 8/19/2019 MIT2_854F10_inv.pdf

    8/78

    NewsvendorProblem

    rx if x ≤ wRevenue = R =

    rw + s(x − w)if

    x > w

    (r − c)x if x ≤ wProfit = P = rw + s(x − w) − cx

    = (r − s)w + (s − c)x

  • 8/19/2019 MIT2_854F10_inv.pdf

    9/78

    NewsvendorProblem

    700 RevenueProfit

    -100

     0

     100

     200

     300

     400

     500

     600

    -2000  200 400 600 800 1000 1200 1400

    stock

  • 8/19/2019 MIT2_854F10_inv.pdf

    10/78

    NewsvendorProblem

    Revenue=Revenue=rw+s(x−w)

    x < w x > w

    Profit=(r−Profit=rw+s(x−w)−cx

    f(w) 

     0

     0.05

     0.1

     0.15

     0.2

     0.25

     0.3

     0.35

     0.4

  • 8/19/2019 MIT2_854F10_inv.pdf

    11/78

    xNewsvendorProblem

    Expected Profit = EP (x) =

    [(r − s)w + (s − c)x]f (w)dw−∞ ∞+ (r − c)xf (w)dw

    x

  • 8/19/2019 MIT2_854F10_inv.pdf

    12/78

    NewsvendorProblem

    or EP (x)

    x x

    = (r − s) wf (w)dw + (s − c)x f−∞ −∞ ∞

    +(r − c)x f (w)dwx

    x

    = (r − s) wf (w)dw−∞( ) F ( ) ( ) (1 F (

  • 8/19/2019 MIT2_854F10_inv.pdf

    13/78

    NewsvendorProblem

    EP is 0 when x = 0.

    When x → ∞, the first term goes to a finite(r − s)Ew. The last term goes to 0.

    The remaining term,

    x(s − c)F (x) → −∞.

    Therefore when x → ∞, EP → −∞.

  • 8/19/2019 MIT2_854F10_inv.pdf

    14/78

    NewsvendorProblem

    EP(x)

    x

    ?

  • 8/19/2019 MIT2_854F10_inv.pdf

    15/78

    NewsvendorProblem

    EP(x)

    x

    ?

  • 8/19/2019 MIT2_854F10_inv.pdf

    16/78

    NewsvendorProblem

    dEP= (r − s)xf (x)+ (s − c)F (x)+(s

    dx +(r − c)(1 − F (x)) − (r − c)xf (x)

    = xf (x)(r − s + s − c − r + c)

    +r − c + (s − c − r + c)F (x)

    = r − c + (s − r)F (x)

  • 8/19/2019 MIT2_854F10_inv.pdf

    17/78

    NewsvendorProblem

    Note that

    • d2EP/dx2 = (s − r)f (x) ≤ 0. Therefor

    concave and has a maximum.

    • dEP/dx > 0 when x = 0. Therefore EP

    maximum which is greater than 0 for some∗x = x > 0.dEP

    • x∗ satisfies (x∗) = 0.dx r − c

    Therefore F (x∗)

  • 8/19/2019 MIT2_854F10_inv.pdf

    18/78

    NewsvendorProblem

    EP(x)

    x

    x*

  • 8/19/2019 MIT2_854F10_inv.pdf

    19/78

    NewsvendorProblem

    x*

    f(w)

    r−c

    r−s 

    F(x*)= 

     0

     0.05

     0.1

     0.15

     0.2

    µ−4σ µ−2σ µ µ+2σ µ+4σ

  • 8/19/2019 MIT2_854F10_inv.pdf

    20/78

    NewsvendorProblem

    This can also be writtenr − c

    F (x∗

    ) = (r − c) + (c − s)

    r − c > 0 is the marginal profit when x <

    c − s > 0 is the marginal loss when x > w

    Choose x∗ so that the fraction of time you d

    too much is marginal profit

  • 8/19/2019 MIT2_854F10_inv.pdf

    21/78

    NewsvendorExample 1

    r = 1, cProblem = .25, s = 0, µw  = 10

    x* x* vs. r

    86

    90

    94

    98

    102

    106

    110

  • 8/19/2019 MIT2_854F10_inv.pdf

    22/78

    NewsvendorExample 2

    r =Problem 1, c = .75, s = 0, µw  = 10

    x* x* vs. r

    105

    101

    97

    93

    89

    85

    81

  • 8/19/2019 MIT2_854F10_inv.pdf

    23/78

    NewsvendorExample 1

    r = 1, cProblem = .25, s = 0, µw  = 10

    x* x* vs. c

    130

    80

    90

    100

    110

    120

  • 8/19/2019 MIT2_854F10_inv.pdf

    24/78

    NewsvendorExample 1

    r = 1, cProblem = .25, s = 0, µw  = 10

    x* x* vs. s

    130

    110

    114

    118

    122

    126

  • 8/19/2019 MIT2_854F10_inv.pdf

    25/78

    NewsvendorExample 2

    r =Problem 1, c = .75, s = 0, µw  = 10

    x* x* vs. s

    121

    117

    113

    109

    105

    101

    97

  • 8/19/2019 MIT2_854F10_inv.pdf

    26/78

    NewsvendorExample 1

    r = 1, cProblem = .25, s = 0, µw  = 10

    x* x* vs. Mean

    240

    40

    80

    120

    160

    200

  • 8/19/2019 MIT2_854F10_inv.pdf

    27/78

    NewsvendorExample 2

    r = 1, cProblem = .75, s = 0, µw  = 10

    x* x* vs. Mean

    30

    70

    110

    150

    190

    230

  • 8/19/2019 MIT2_854F10_inv.pdf

    28/78

    NewsvendorExample 1

    r = 1, cProblem = .25, s = 0, µw  = 10

    x* x* vs. Std

    114

    112

    110

    108

    106

    104

    102

  • 8/19/2019 MIT2_854F10_inv.pdf

    29/78

    NewsvendorExample 2

    r = 1, cProblem = .75, s = 0, µw  = 10

    x* x* vs. Std

    88

    90

    92

    94

    96

    98

    100

  • 8/19/2019 MIT2_854F10_inv.pdf

    30/78

    NewsvendorWhy is x∗ linear in µw

    Problem

    r − cF (x∗) =

    r − s

    Assume demand w is N (µw, σw). Then

    w − µwF (w) = Φ

    σw

    where Φ is the standard normal cumulative d

  • 8/19/2019 MIT2_854F10_inv.pdf

    31/78

    NewsvendorWhy is x∗ linear in µw

    Problem

    Therefore

    � x∗ − µw r − c

    Φ =σw r − s

    or

    � x∗ − µw r − c= Φ−1σw r − s

    or

    r − cx∗ = µw + σwΦ

    −1

  • 8/19/2019 MIT2_854F10_inv.pdf

    32/78

    NewsvendorWhy is x∗ linear in µw

    Problem

    Note that

    Φ−1(k) > 0 if k > .5

    and

    Φ−1(k) < 0 if k < .5

    Therefore r − c• x∗ increases with σw if > .5, and

    r − sr − c

    • 

    x∗ decreases with σw if < .5.r − s

  • 8/19/2019 MIT2_854F10_inv.pdf

    33/78

    EOQ

    • Economic Order Quantity

    • Motivation: economy of scale in ordering.

    • Tradeoff:

    ⋆ Each time an order is placed, the compa

    fixed cost in addition to the cost of the go⋆ It costs money to store inventory.

    A i

  • 8/19/2019 MIT2_854F10_inv.pdf

    34/78

    Assumptions

    EOQ

    • 

    No randomness.

    • No delay between ordering and arrival of g

    • 

    No backlogs.• Goods are required at an annual rate of λ

    year. Inventory is therefore depleted at the

    units per year.• If the company orders Q units, it must pay

    the order. s is the ordering cost , c is the u

    • 

    It costs h to store one unit for one year. h

    P bl

  • 8/19/2019 MIT2_854F10_inv.pdf

    35/78

    Problem

    EOQ

    • 

    Find a strategy for ordering materials that

    minimize the total cost.

    • There are two costs to consider: the order

    and the holding cost.

    S i

  • 8/19/2019 MIT2_854F10_inv.pdf

    36/78

    ScenarioEOQ

    • At time 0, inventory level is 0.

    • 

    Q units are ordered and the inventory leve

    instantaneously to Q.

    • Material is depleted at rate λ.

    • 

    Since the problem is totally deterministic, wwait until the inventory goes to zero before

    next. There is no danger that the inventory

    zero earlier than we expect it to.

    S i

  • 8/19/2019 MIT2_854F10_inv.pdf

    37/78

    ScenarioEOQ

    • 

    Because of the very simple assumptions, w

    assume that the optimal strategy does not

    over time.

    • Therefore the policy is to order Q each tim

    inventory goes to zero. We must determineoptimal Q.

    S i

  • 8/19/2019 MIT2_854F10_inv.pdf

    38/78

    ScenarioEOQ

       I  n  v  e  n   t  o  r  y

    Q

     jumpdecrease at rate λ

    T 2T

    T = Q/λ (years)

    F l ti

  • 8/19/2019 MIT2_854F10_inv.pdf

    39/78

    Formulation

    EOQ

    • The number of orders in a year is 1/T = λ

    Therefore, the ordering cost in a year is sλ

    • The average inventory is Q/2. Therefore t

    average inventory holding cost is hQ/2.

    • 

    Therefore, we must minimizehQ sλ

    C = +2 Q

    over Q.

    F l ti

  • 8/19/2019 MIT2_854F10_inv.pdf

    40/78

    Formulation

    EOQ

    ThendC h sλ

    = − = 0dQ 2 Q2

    or

    2sλ

    Q∗ =h

    E amples

  • 8/19/2019 MIT2_854F10_inv.pdf

    41/78

    Examples

    EOQ

    In the following graphs, the base case is

    • 

    λ = 3000• s = .001

    • h = 6

    Note that

    Q∗ = 1

    Examples

  • 8/19/2019 MIT2_854F10_inv.pdf

    42/78

    Examples

    EOQ

    0

     10

     20

     30

     40

     50

     0 2 4 6 8

      o  s   t

    s=.01s=.001

    s=.0001

    Examples

  • 8/19/2019 MIT2_854F10_inv.pdf

    43/78

    Examples

    EOQ

    0

     0.2

     0.4

     0.6

     0.8

     1

     1.2

     1.4

     1.6

     1.8

     2

     0 2000 4000 6000 8000 1

       Q   *

    Examples

  • 8/19/2019 MIT2_854F10_inv.pdf

    44/78

    Examples

    EOQ

    0

     0.5

     1

     1.5

     2

     2.5

     3

     3.5

    0 0 002 0 004 0 006 0 008

       Q

       *

    Examples

  • 8/19/2019 MIT2_854F10_inv.pdf

    45/78

    Examples

    EOQ

    0

     1

     2

     3

     4

     5

     6

     7

     8

    0 2 4 6 8

       Q   *

  • 8/19/2019 MIT2_854F10_inv.pdf

    46/78

    More Issues

    • Random delivery times and amounts.

    • 

    Order lead time.

    • Vanishing inventory.

    • Combinations of these issues and random

    ordering/setup costs.

    Make to Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    47/78

    Base Stock Make-to-Stock Qu

    Policy

    Usual assumptions:

    • Demand is random.

    • 

    Inventory is held (unlike newsvendor problem).

    • No ordering cost, batching, etc.

    Policy• Try to keep inventory at a fixed level S .

    Issue

    • Stockout: a demand occurs when there is no stock

    Make to Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    48/78

    Base Stock Make-to-Stock Qu

    Policy

    Issues

    • What fraction of the time will there be stoc

    how much demand occurs during stockout

    • How much inventory will there be, on the a

    • 

    How much backlog will there be, on the av

    Make to Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    49/78

    Base Stock Make-to-Stock Qu

    Policy

    Production Dispatch Material

    Raw SupplierFrom

    Factory

    Floor

    FG

    Bac

    Material Flow Information Flow

    • When an order arrives (generated by “Demand”),

    ⋆ an item is requested from finished goods invento⋆ an item is delivered to the customer from the finis

    inventory (FG) or, if FG is empty, backlog is incre

    and⋆ a signal is sent to “Dispatch” to move one item fr

    Make to Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    50/78

    Base Stock Make-to-Stock Qu

    Policy

    Production Dispatch Material

    Raw SupplierFrom

    Factory

    Floor

    FG

    Bac

    Material Flow Information Flow

    • There is some mechanism for ordering raw materia

    suppliers.

    • We do not consider it here.

    • We assume that the raw material buffer is never em

    Make to Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    51/78

    Base Stock Make-to-Stock Qu

    Policy

    Production Dispatch Material

    Raw SupplierFrom

    Factory

    Floor

    FG

    Bac

    Material Flow Information Flow

    • Whenever the factory floor buffer is not empty and

    production line is available, the production line take

    from the factory floor buffer and starts to work on it

    • When the production line completes work on a par

    finished part in the finished goods buffer or, if there

    it sends the part to the customer and backlog is red

    S Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    52/78

    Base Stock Make-to-Stock Qu

    PolicyQ

    Production Dispatch Material

    Raw SupplierFrom

    Factory

    Floor

    F

    Ba

    Material Flow Information Flow

    • Q(t) = factory floor inventory at time t.

    • 

    I (t) =

    ⋆ the number of items in FG, if this is nonnegative and thereor

    ⋆ – (the amount of backlog), if backlog is non-negative and F

    • There are no lost sales. I (t) is not bounded from below. It cnegative value

    B S k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    53/78

    Base Stock Make-to-Stock Qu

    PolicyQ

    Production Dispatch Material

    Raw SupplierFrom

    Factory

    Floor B

    Material Flow Information Flow

    • Assume Q(0) = 0 and I (0) = S . Then Q(0) + I (0) = S .

    • At every time t when a demand arrives,

    ⋆ I (t) decreases by 1 and Q(t) increases by 1 so Q(t) + Ichange.

    • At every time t when a part is produced,

    ⋆ I (t) increases by 1 and Q(t) decreases by 1 so Q(t) + Ichange.

    B S k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    54/78

    Base Stock Make-to-Stock Qu

    PolicyQ

    Production Dispatch Material

    Raw SupplierFrom

    Factory

    Floor B

    Material Flow Information Flow

    • Also, Q(t) ≥ 0 and I (t) ≤ S .

    • Assume the factory floor buffer is infinite.

    • Assume demands arrive according to a Poisson pr

    rate parameter λ.

    • Assume the production process time is exponentia

    distributed with rate parameter µ.

    B S k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    55/78

    Base Stock Make-to-Stock Qu

    Policy

    • Assume λ < µ.

    Therefore, in steady state,

    prob(Q = q) = (1 − ρ)ρq, q ≥ 0

    where ρ = λ/µ < 1.

    • What fraction of the time will there be stoc

    That is, what is prob(I ≤ 0)?

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    56/78

    Base Stock Make-to-Stock Qu

    Policy

    prob(I ≤ 0) = prob(Q ≥ S ) = (1 − ρ)ρq 

    q=S  

    ∞ ∞ = (1 − ρ) ρq  = (1 − ρ)ρS   ρq  = (1 − ρ)ρS  

    1q=S    q=0

    soprob(I ≤ 0) = ρS  

    • How much demand occurs during stockout periods?

    ρS λ

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    57/78

    Base Stock Make-to-Stock Qu

    Policy

    • 

    How much inventory will there be, on the average?

    on what you mean by “inventory”.)

    ρ• 

    EQ =1 − ρ

    • EI = S − EQ is not the expected finished goods

    is the expected inventory/backlog.

    • We want to know

    I if I > 0E (I +) = E = E (I |I > 0)pro

    h i

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    58/78

    Base Stock Make-to-Stock Qu

    PolicyS  

    E (I |I > 0) = i prob(I = i|I > 0)i=1

    S  

    i prob(I = iS  

    i prob(I = i ∩ I > 0) i=1= = S prob(I > 0) i=1

    prob(I = j j=1

    S −1

    (S − q) prob(Q = q)q=0

    =S −1

    prob(Q = s)

    s=0

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    59/78

    Base Stock Make to Stock Qu

    Policy

    S −1 S −1

    S prob(Q = q) − q prob(Q =q=0 q=0

    =S −1

    prob(Q = q′)q ′=0

    S −1 S −1

    q prob(Q = q) (1 − ρ) qρq 

    q=0 q=0= S − = S − =

    S −

    1 S −

    1prob(Q = q′) (1 − ρ) ρq 

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    60/78

    Base Stock Make to Stock Qu

    Policy

    ThereforeS −1

    qρq 

    q=0

    E (I |I > 0) = S − S −1

    ρq 

    q=0

    and S −1 S −1

    E (I +) = S (1 − ρ) ρq − (1 − ρ) qq=0 q=0

    S −1

    = S prob(Q < S) − (1 − ρ) qρq 

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    61/78

    Base Stock Make to Stock Qu

    Policy

    • How much backlog will there be, on the av

    • 

    This time, we are looking for −E (I −), whe

    I if I ≤ 0

    E (I −

    ) = E = E (I |I ≤ 0)0 otherwise−∞

    E (I |I ≤ 0) = i prob(I = i|I ≤i 0

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    62/78

    Base Stock Make to Stock Qu

    Policy−∞

    i prob(I−∞ prob(I = i ∩ I < 0) i=0= i =

    −∞prob(I < 0) i=0prob(I

     j=0∞

    (S − q) prob(Q = q)

    q=S  =∞

    prob(Q = s)s=S  

    where, because Q = S − I , we substitute q = S −

    B St k Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    63/78

    Base Stock Make to Stock Qu

    Policy

    ∞ ∞

    S prob(Q = q) − q prob(Q =q=S q=S  

    =∞

    prob(Q = q′)′q =S  

    ∞ S −1

    q prob(Q = q) EQ − q prq=S q=0

    = S − = S −∞ S −

    1prob(Q = q′) 1 −

    prob

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    64/78

    Base Stock Make to Stock Qu

    Policy

    S −1

    EQ − (1 − ρ) qρq

    q=0= S −S −1

    1 − (1 − ρ) ρq

    q=0so

    E (I −) = E (I |I ≤ 0)prob(I ≤ 0

    ( +) ( )

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    65/78

    Base Stock Make to Stock Qu

    Policyprob I pos

    0.2

     0.4

     0.6

     0.8

     1

     0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    λ

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    66/78

     10

    Base Stock Make to Stock Qu

    PolicyEIposEIneg

    0

     0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    -10

    -20

    -30

    -40

    λ

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    67/78

    Base Stock Make to Stock Qu

    Policy

    0.2

     0.4

     0.6

     0.8

     1

     prob I pos, lambda=.6 prob I pos, lambda=.9

    0

    0 5 10 15 20 25 30 35

    S

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    68/78

    Base Stock Make to Stock Qu

    Policy

    -10

    -5

     0

     5

     10

     15

     20

     25

     30

     35

     40

     0 5 10 15 20 25 30 35

    EIpos, lambda=.6EIneg, lambda=.6EIpos, lambda=.9EIneg, lambda=.9

    S

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    69/78

    Base Stock a e to Stoc Qu

    Policy Optimization of

    We have analyzed a policy but we haven’t completely

    How do we select S ?

    One possible way: choose S to minimize a function texpected costs due to finished goods inventory (E (I 

    backlog (E (I −)). That is, minimize

    EC (I ) = E (hI + − bI −) = hE (I +) − bE (

    where h is the cost of holding one unit of inventory founit and b is the cost of having one unit of backlog fo

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    70/78

    Base Stock Q

    Policy Optimization of

    cost

    −b

    h

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    71/78

    Base Stock Q

    Policy Optimization of

     5

     10

     15

     20

     25

     30

     35

     40

    Cost, lambda=.6Cost, lambda=.9

    0

    0 5 10 15 20 25 30 35

    S

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    72/78

    Base StockPolicy Optimization of

    Problem: Find S ∗ to minimize hE (I +) − bE

    Solution 

    1

    : S 

    = ⌊S ˜⌋ or ⌊S 

    ˜⌋ + 1, where

    S ̃+1 hρ =

    h + b

    Note: ρS ̃+1 = prob(Q ≥ S ̃+ 1) = prob(I

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    73/78

    Base StockPolicy Optimization of

    That is, we choose S so thath

    prob(I < 0) =h + b

    Look familiar? This is the solution to the newsvendor problem ifI = x − w,h = c − s, and b = r − c because

    r −F (x∗) = prob(w ≤ x∗) = prob(I ≥ 0) =

    (r − c) +so

    r − c c − sprob(I < 0) = 1 − =

    (r − c) + (c − s) (r − c) + (

    c − s is the cost of one more unit of inventory when x > w, ie I

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    74/78

    Base StockPolicy Optimization of

    profit

    r−c

    s−c

    w

    Newsvendor profit function

    Base Stock Make-to-Stock Qu

  • 8/19/2019 MIT2_854F10_inv.pdf

    75/78

    Base StockPolicy Optimization of

    Questions:

    • 

    How does the problem change if we considfloor inventory? How does the solution cha

    • How does the problem change if we consid

    finished goods inventory space ? How doesolution change?

    • 

    How else could we have selected S ?

  • 8/19/2019 MIT2_854F10_inv.pdf

    76/78

    Q, R Policy

    • Fixed ordering cost, like in EOQ problem

    • Random demand, like in newsvendor or ba

    problems.

    • Policy: when the inventory level goes down

    a quantity Q.• Hard to get optimal R and Q; use EOQ an

    stock ideas.

    Inventory

  • 8/19/2019 MIT2_854F10_inv.pdf

    77/78

    InventoryPosition

    Inventory position

    Q

    Lead time

    Inventory

    Q/ λ

    Material ordered Material arrives

    The current order must satisfy demand until the next

    MIT OpenCourseWare

  • 8/19/2019 MIT2_854F10_inv.pdf

    78/78

    MIT OpenCourseWarehttp://ocw.mit.edu

    2.854 / 2.853 Introduction to Manufacturing Systems

    Fall 201

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/