Top Banner
MIT Rocket Team November 20, 2010 Design and Fabrication
52

MIT Rocket Team November 20, 2010 Design and Fabrication.

Mar 29, 2015

Download

Documents

Mina Newsome
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MIT Rocket Team November 20, 2010 Design and Fabrication.

MIT Rocket TeamNovember 20, 2010

Design and Fabrication

Page 2: MIT Rocket Team November 20, 2010 Design and Fabrication.

An Introduction to COMPOSITES

Page 3: MIT Rocket Team November 20, 2010 Design and Fabrication.

Carbon Fiber Carbon fiber custom laminate Material: 5.7 oz 3k twill carbon fiber

sheet Epoxy

Aeropoxy 2032 resin Aeropoxy 3665 hardener

Aspects High strength-to-

weight ratio High cost

Page 4: MIT Rocket Team November 20, 2010 Design and Fabrication.

Fiberglass

Carbon fiber is RF opaque Material: 6 oz plain weave fiberglass Epoxy

Aeropoxy 2032 resin Aeropoxy 3665 hardener

Locations Fairing Potentially second

stage body or sections

Page 5: MIT Rocket Team November 20, 2010 Design and Fabrication.

General Fabrication Techniques Elevated temperature cure

Custom-built oven Inner dimensions sufficient for full

cure of either stage Capable of reaching in excess of

300º F Not necessary for epoxy choice, but

provides additional temperature resistance

Reduces cure time Improves resin distribution and

mechanical properties

Vacuum bagging Improves surface

finish of part Reduces weight

before removal of excess epoxy

Page 6: MIT Rocket Team November 20, 2010 Design and Fabrication.

Body Tube Ply Layup Determine number of plies

Meet loading requirements Manufacturing reasons

Additional plies at bulkheads and ends Antisymmetic and Axisymmetric

Page 7: MIT Rocket Team November 20, 2010 Design and Fabrication.

Your Mission

Page 8: MIT Rocket Team November 20, 2010 Design and Fabrication.

Fin Design Sandwich laminate

Balsa core (1/8”) Single–layer carbon fiber facesheets

Construction Cut balsa to shape Cut vacuum bagging materials Apply thin film of epoxy to balsa Apply facesheets Apply additional epoxy and ensure is well

distributed Apply vacuum bag release, then breather, then

strechlon Insert vacuum tube and cover edges with sealant

tape Fin Sizing

Semispan: 5” Chord: 5”-3”

Page 9: MIT Rocket Team November 20, 2010 Design and Fabrication.

[Build Composites]

Page 10: MIT Rocket Team November 20, 2010 Design and Fabrication.

Rocket BasicsAn Introduction to ROCKETS

Page 11: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 12: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 13: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 14: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 15: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 16: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 17: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 18: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 19: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 20: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 21: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 22: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 23: MIT Rocket Team November 20, 2010 Design and Fabrication.

Rocket Equation

Initial Mass Propellant Structural Mass Fraction Payload

Delta-V to Earth orbit: ~10 km/s

Propulsion Type Isp

Solid 250

LO2+LH2 450

LO2+RP-1 350

Electric 2000

Page 24: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 25: MIT Rocket Team November 20, 2010 Design and Fabrication.
Page 26: MIT Rocket Team November 20, 2010 Design and Fabrication.

Composites Design

Page 27: MIT Rocket Team November 20, 2010 Design and Fabrication.

What are composites?

Single Ply Carbon or glass fibers Epoxy matrix Usually unidirectional, but can be weave

Laminate Multiple plies

Sandwich Face sheets of plies Spacer material between

Page 28: MIT Rocket Team November 20, 2010 Design and Fabrication.

Why Composites?

Page 29: MIT Rocket Team November 20, 2010 Design and Fabrication.

Evaluation of Composites

Standard Laminates Rule of Mixtures E T c = v fE T f + v mE T m

Stiffness is simply the average of stiffnesses Be sure to account for direction

Z

T

Lgraphite/epoxy

Matrix

Fiber

Z

T

L

Page 30: MIT Rocket Team November 20, 2010 Design and Fabrication.

Sandwich Materials

Page 31: MIT Rocket Team November 20, 2010 Design and Fabrication.

Composites Fabrication

Techniques (Cont)

Page 32: MIT Rocket Team November 20, 2010 Design and Fabrication.

Body Tube Manufacturing

Prepare mandrel of phenolic tube with wax, mylar

Apply resin Apply fabric and work in resin Repeat for all plies Remove excess Apply vacuum bag material Bake for 1 hour Remove from mandrel Cut then sand edges

Page 33: MIT Rocket Team November 20, 2010 Design and Fabrication.

Bulkhead Design

Purpose: attach motor casings to airframe Design Options

Plastic rings Holes included around periphery for wiring and

antenna Inner portion secured with tape friction fit Outer portion secured with epoxy from both sides

COTS casings

Validation Static pull motor simulation Static fire testing

Page 34: MIT Rocket Team November 20, 2010 Design and Fabrication.

Fairing Design Material: Fiberglass Design Options

Tangent ogive: easy to build Von Karman: drag for large mach range Parabola: drag at subsonic speeds

Construction Layup in halves on aluminum mandrel and

plate Cure halves Affix together with strips Cure again Sand until smooth Apply additional filler as necessary

Page 35: MIT Rocket Team November 20, 2010 Design and Fabrication.

Composites Fabrication Examples

Page 36: MIT Rocket Team November 20, 2010 Design and Fabrication.

Fins

Page 37: MIT Rocket Team November 20, 2010 Design and Fabrication.

Body Tube

Page 38: MIT Rocket Team November 20, 2010 Design and Fabrication.

Nose Cone

Page 39: MIT Rocket Team November 20, 2010 Design and Fabrication.

Completed

Page 40: MIT Rocket Team November 20, 2010 Design and Fabrication.

SpaceX Interstage Mandrel

Page 41: MIT Rocket Team November 20, 2010 Design and Fabrication.

Composite Testing

Page 42: MIT Rocket Team November 20, 2010 Design and Fabrication.

Instron Testing

Page 43: MIT Rocket Team November 20, 2010 Design and Fabrication.

Prep

Page 44: MIT Rocket Team November 20, 2010 Design and Fabrication.

Load Testing

Page 45: MIT Rocket Team November 20, 2010 Design and Fabrication.

Engine Testing

Page 46: MIT Rocket Team November 20, 2010 Design and Fabrication.

Pyro Test

Page 47: MIT Rocket Team November 20, 2010 Design and Fabrication.

On the Launch Rail

Page 48: MIT Rocket Team November 20, 2010 Design and Fabrication.

Launch

Page 49: MIT Rocket Team November 20, 2010 Design and Fabrication.

Merlin Engine

Page 50: MIT Rocket Team November 20, 2010 Design and Fabrication.

Engine Fires

Page 51: MIT Rocket Team November 20, 2010 Design and Fabrication.

Static Fires

Page 52: MIT Rocket Team November 20, 2010 Design and Fabrication.

Questions?