Top Banner
MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, USA
21

MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

Jan 03, 2016

Download

Documents

Jacob Clarke
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Lasers and RF-Timing

Franz X. Kaertner

Department of Electrical Engineering and Computer Science and

Research Laboratory of Electronics,Massachusetts Institute of Technology,

Cambridge, USA

Page 2: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Outline

I. System Overview

II. Timing Distribution

III. RF-Synchronization

IV. Some Experimental Results

V. Photo-Injector

VI. Long Seed Pulse Generation

VII. Conclusion

Page 3: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Facility conceptFacility concept

0.3 nm 0.1 nm

UV Hall X-ray Hall

Nanometer Hall

SC Linac4 GeV2 GeV1 GeV

1 nm

0.3 nm

100 nm

30 nm

10 nm

10 nm

3 nm

1 nm

Master oscillator

Pump laser

Pump laser

Seed laser

Seed laser

Seed laser

Pump laser

Fiber link synchronization

Injector laser

Undulators

Undulators

Undulators

Future upgrade to 0.1 nm at 8 GeV

SC Linac

W.S. Graves, MIT Bates Laboratory

Page 4: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Timing Distribution

Ph

oto

-Inj

.t

= 1

00 fs

Gun

Optical Master OscillatorMode-locked Laser

RF-Clock100 MHz

Timing Stabilized Fiber Links

10kHz5s

Pulsed Klystron

Linac

SC-Accel.1.3 GHzt=200 fs

Linearizer3.9 GHzt=10 fs

RF-Switch0.65 GHzt=200 fs

Undu-lator

HH

G-S

eed

t =

10

fs

Pro

be L

ase

rt

= 1

0 fs

t: Required Timing Jitter in Each Section10 fs ~ 3m

Page 5: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

CrossCorrelator

Timing Stabilized Fiber Links (<1km)

Fiber

ML - Laser

PZT

Fixed Length L

Assuming no fiber length fluctuations faster than 2L/c.

Page 6: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Cooperation on Frequency Metrology and Timing Distribution

Both at MIT and JILA-NIST: MURI-Projects funded by ONR

Frequency Metrology and

Femtosecond Technology for Optical Clocks

MIT:E. P. Ippen (PI)Y. Fink F. KaertnerD. KleppnerL. KolodziejskiJ. ShapiroF. Wong

JILA-NIST:J. Ye (PI)S. DiddamsL. Holberg…..

J. Ye, JOSA B 20, 1459 – 1469 (2003)

Page 7: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Experimental Results on Transmission of Optical Frequency Standards

By active fiber induced phase noise cancelation

Page 8: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Sub-10 fs RF-Synchronization(Mike Perrott, MTL, MIT-Proprietary Information)

PhaseModulator

4

VCOLoopFilter

-1.0

-0.5

0.0

0.5

1.0

w0 / (L

/)1/2

20151050Cavity Length, L / cm

RF: f = m fR

Recovered from optical pulse train

RepetitionRate: fR

PBS

Page 9: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Experimental Results on Synchronization

Synchronization of a 5fs Ti:Sapphire laser @ 800 nmand a 30 fs Cr:Forsterite laser @ 1300 nm

with 0.3 fs timing jitter measuredfrom 1mHz to 2.3 MHz.

Page 10: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

5fs Ti:sapphire Laser

Laser crystal:

2mm Ti:Al2O3

PUMP

OC 1

OC 2

Base Length = 30cm for 82 MHz Laser

L =

20

cm

BaF2 - wedges

1mm BaF2

Page 11: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Laser Spectra

-60

-50

-40

-30

-20

-10

0

Spec

tral

Pow

er [

log]

1600140012001000800600Wavelength [nm]

Ti:sapphire Cr:forsterite

5 fs 30 fs

Page 12: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Output(650-1450nm)

Ti:sa

Cr:fo

3mm Fused Silica

SFG

SFG

Rep.-RateControl

(1/496nm = 1/833nm+1/1225nm).

Δt

0V

Balanced Cross-Correlator

Page 13: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Balanced Cross-Correlator Output(650-1450nm)

Ti:sa

Cr:fo

3mm Fused Silica

SFG

SFG

Rep.-RateControl

(1/496nm = 1/833nm+1/1225nm).

-

+

Δt

0V-

Δt

+GD

-GD/2

Δt

0V

Page 14: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Balanced Cross-Correlator

Page 15: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Measuring the residual timing jitter

Output(650-1450nm)

JitterAnalysis

SFG

Ti:sa

Cr:fo

3mm Fused Silica

SFG

SFG

Rep.-RateControl

(1/496nm = 1/833nm+1/1225nm).

GD

-GD/2

Page 16: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Experimental result: Residual timing-jitter

The residual out-of-loop timing-jitter measured from 10mHz to 2.3 MHz is 0.3 fs (a tenth of an optical cycle)

Long Term Drift Free

1.0

0.8

0.6

0.4

0.2

0.0Cro

ss-C

orre

lati

on A

mpl

itud

e

-100 0 100

Time [fs]

100806040200Time [s]

Timing jitter 0.30 fs (2.3MHz BW)

Page 17: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Page 18: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

1 Laser System & Synchronization

High Harmonic Generation

> 10 nJ

Sub fs – 10 fs, 2ps

1-10 kHz

@ 8,30,200 nm

Photo-Injector:

10-20 ps Pulses

1-10 J

1-10 kHz

@ 266 nm(conv. NLO)

Fiberlink + Synchronization

LINAC FELE-beam

X00 m

10 fsTiming Jitter

Page 19: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Directly Diode-pumped Photo-Injector

To achieve a homogeneous e-beam bunch

Yb:fiber amplifierIPG-Photonics

20ps, 10J, 1-10 kHz@ 1064 nm

4th-Harmonic

20ps, 1J, 1-10 kHz@266 nm

Yb:YAG, 1ps

rep. Rate100 MHz

Pulse Selector

Acusto-OpticProgramablePulse Shaper

(Dazzler,Fastlight)

Temporal: Flat-top shaped

Page 20: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

Long Pulse Seed Generation2ps, 1mJ @ 200 (266) nm

Yb: YAGCPA

2ps, 20mJ, 1-10 kHz@1064 nm

4th-Harmonic

2ps, 1mJ, 1-10 kHz@ 200 (266) nm

Yb:YAG, 2ps

rep. Rate100 MHz

Pulse Selector

Acusto-OpticProgramablePulse Shaper

(Dazzler,Fastlight)

Page 21: MIT Optics & Quantum Electronics Group Lasers and RF-Timing Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory.

MIT Optics & Quantum Electronics Group

• Seeding needs 10 fs timing distribution over 300m distances

(rel. precision 10-8). Can be accomplished by length stabilized

fiber links.

• Fiber noise eliminated by active feedback.

• Scheme for phase stable RF-regeneration has been outlined

• Less than 0.3 fs between independent lasers has

been demonstrated, Optical Clock distribution.

• Photo-Injection Laser: Mode-locked Yb:YAG laser and amplifier

• Long wavelength seed: Mode-locked Yb:YAG laser and CPA

Conclusions