Top Banner
Zero Read Noise Detectors for the TMT Don Figer, Brian Ashe , John Frye, Brandon Hanold, Tom Montagliano, Don Stauffer (RIDL), Brian Aull, Bob Reich, Dan Schuette, Jim Gregory, Erik Duerr, Joseph Donnelly (MIT/LL) MIT LL No. MS-43282, ESC No. 09-1097
29

MIT LL No. MS-43282, ESC No. 09-1097

Mar 15, 2016

Download

Documents

howard-avery

Zero Read Noise Detectors for the TMT Don Figer, Brian Ashe , John Frye, Brandon Hanold, Tom Montagliano, Don Stauffer (RIDL), Brian Aull, Bob Reich, Dan Schuette, Jim Gregory, Erik Duerr, Joseph Donnelly (MIT/LL). MIT LL No. MS-43282, ESC No. 09-1097. Outline. Motivation - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MIT LL No. MS-43282, ESC No. 09-1097

Zero Read Noise Detectors for the TMTDon Figer, Brian Ashe , John Frye, Brandon Hanold, Tom Montagliano, Don Stauffer (RIDL), Brian Aull, Bob Reich, Dan Schuette, Jim Gregory, Erik Duerr, Joseph Donnelly (MIT/LL)

MIT LL No. MS-43282, ESC No. 09-1097

Page 2: MIT LL No. MS-43282, ESC No. 09-1097

2

Outline

• Motivation– Why pursue photon-counting technology?– Why use Geiger-mode avalanche photodiodes

(APDs)?• Moore Detector for TMT• Heritage: LIDAR• Conclusions

Page 3: MIT LL No. MS-43282, ESC No. 09-1097

3

Outline

• Motivation– Why pursue photon-counting technology?– Why use Geiger-mode avalanche photodiodes

(APDs)?• Moore Detector for TMT• Heritage: LIDAR• Conclusions

Page 4: MIT LL No. MS-43282, ESC No. 09-1097

4

Why pursue photon-counting technology?• Photon-counting detectors effectively have

zero read noise.• In low light applications, read noise can

dominate signal-to-noise ratio.• Many applications can become low light

applications with higher resolutions.– spectroscopy– time-resolved photometry– fast wavefront sensing and guiding

Page 5: MIT LL No. MS-43282, ESC No. 09-1097

5

Detectivity (higher is better)

.)(411

2yDetectivit

1ysensitivit

1yDetectivit

1SNRat which flux y Sensitivit

noise) read(noise)dark (flux backgroundflux signal

flux signal

dominated noise read

2,

1,

2,

2,

22

pixreadreaddarkbackgroundpix

SNR

readpixdarkpixbackgroundpix

readdarkbackinstinst

inst

nN

tQE

NtitQENntQE

N

NntintQENntQEN

tQEN

NtitQEFh

AtQEFh

A

tQEFh

A

NSSNR

Page 6: MIT LL No. MS-43282, ESC No. 09-1097

6

Exposure Time to SNR=1

.

)(2

)(4)()(

for t.equation SNR Solve SNR. particular areach to timeexposure

0 and 0 and 1

2

222,

4,

2

,

QEN

nN

QEN

SNRNQEnNinQENnQENSNRinQENnQENSNR

pixreadiNSNR

readpixdarkpixbackgroundpixdarkpixbackgroundpix

darkbackground

Page 7: MIT LL No. MS-43282, ESC No. 09-1097

7

Example for Planet Imaging

• The exposure time required to achieve SNR=1 is dramatically reduced for a zero noise detector compared to detectors with state of the art read noise.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0 6,600 2,300 1,311 900 680 544 453 388 338 300 1 7,159 2,674 1,591 1,123 865 703 591 510 448 400 2 8,486 3,457 2,141 1,547 1,209 992 841 730 645 577 3 10,148 4,363 2,760 2,016 1,587 1,309 1,113 968 857 768 4 11,954 5,312 3,402 2,500 1,976 1,633 1,392 1,212 1,074 964 5 13,830 6,281 4,053 2,990 2,369 1,961 1,673 1,459 1,293 1,161 6 15,745 7,259 4,709 3,484 2,764 2,291 1,956 1,706 1,513 1,359 7 17,684 8,244 5,368 3,979 3,161 2,621 2,239 1,954 1,734 1,558

read

noi

se

mag_star=5, mag_planet=30, R=100, i_dark=0.0010

Exposure Time (seconds) for SNR = 1

FOM Quantum Efficiency

Page 8: MIT LL No. MS-43282, ESC No. 09-1097

8

Why use Geiger-Mode Avalanche Photodiodes (GM-APDs)?• produce easily distinguishable high voltage

pulse per photon• have zero “excess noise factor”• allow for hybridization and bonding to non-

optical detecting materials• allow photon counting inside each pixel for

high frame rates and time tagging• have demonstrated excellent performance for

LIDAR applications

Page 9: MIT LL No. MS-43282, ESC No. 09-1097

9

Gain of an APD

1

10

100

M

Breakdown0

Ordinary photodiode

Linear-mode APD

Geiger-mode APD

Response to a photon M1

∞ I(t)

Page 10: MIT LL No. MS-43282, ESC No. 09-1097

10

Geiger-Mode Imager: Photon-to-Digital Conversion

Quantum-limited sensitivityNoiseless readout Photon counting or timing

APD

Digitaltimingcircuit

Digitallyencodedphotonflight time

photon

Lensletarray

APD/CMOS array

Focal-plane

Pixel circuit

Page 11: MIT LL No. MS-43282, ESC No. 09-1097

11

Outline

• Motivation– Why pursue photon-counting technology?– Why use Geiger-mode avalanche photodiodes

(APDs)?• Moore Detector for TMT• Heritage: LIDAR• Conclusions

Page 12: MIT LL No. MS-43282, ESC No. 09-1097

12

Moore Detector Project Goals• Operational

– Photon-counting– Wide dynamic range: flux limit to 108 photons/pixel/s– Streaming readout

• adaptive optics imaging • multiple target tracking

– Time delay and integrate• Technical

– Backside illumination for high fill factor– Demonstrate 25 m pitch imager with streaming, single

photon, readout

Page 13: MIT LL No. MS-43282, ESC No. 09-1097

13

Moore Photon Counting ImagerOptical (Silicon) Detector Performance

Parameter Phase 1 Goal

Phase 2 Goal

Format 256x256 1024x1024Pixel Size 25 µm 20 µmRead Noise zero zeroDark Current (@140 K) <10-3 e-/s/pixel <10-3 e-/s/pixelQEa Silicon (350nm,650nm,1000nm) 30%,50%,25% 55%,70%,35%Operating Temperature 90 K – 293 K 90 K – 293 KFill Factor 100% 100%aProduct of internal QE and probability of initiating an event. Assumes

antireflection coating match for wavelength region.

Page 14: MIT LL No. MS-43282, ESC No. 09-1097

14

Moore Photon Counting ImagerInfrared (InGaAs) Detector PerformanceParameter Phase 1

Goal Phase 2

GoalFormat Single pixel 1024x1024Pixel Size 25 µm 20 µmRead Noise zero zeroDark Current (@140 K) TBD <10-3 e-/s/pixelQEa (1500nm) 50% 60%Operating Temperature 90 K – 293 K 90 K – 293 KFill Factor NA 100% w/o lensaProduct of internal QE and probability of initiating an event. Assumes

antireflection coating match for wavelength region.

Page 15: MIT LL No. MS-43282, ESC No. 09-1097

15

Moore Detector Project Status

• A 256x256x25m readout integrated circuit is being fabricated.

• InGaAs test diodes are being fabricated.• Silicon GM-APD arrays have been fabricated and will

be bump-bonded to the new readout circuit.• Photon-counting electronics are being built.• Testing will begin later in 2009.• Depending on results, megapixel silicon or InGaAs

arrays will be developed.

Page 16: MIT LL No. MS-43282, ESC No. 09-1097

16

Overview of Pixel OperationPixel Architecture

Page 17: MIT LL No. MS-43282, ESC No. 09-1097

17

ROIC Pixel Layout (2x2 pixels)

2 pixels, 50 m

2 pixels, 50 m

metal bump bond pad

core(active quench, discriminator, APD latch)

counter rollover latch

counters (4 pixels)

Page 18: MIT LL No. MS-43282, ESC No. 09-1097

18

InGaAs Development

• 3 APD designs grown and fabricated– 2-m-wide avalanche region (all InP)– 3-m-wide avalanche region (all InP)– 2-m-wide avalanche region (InGaAs absorber)

• Room-temperature CV measurements made• Devices in packaging for low temperature

measurements

Page 19: MIT LL No. MS-43282, ESC No. 09-1097

19

Outline

• Motivation– Why pursue photon-counting technology?– Why use Geiger-mode avalanche photodiodes

(APDs)?• Moore Detector for TMT• Heritage: LIDAR• Conclusions

Page 20: MIT LL No. MS-43282, ESC No. 09-1097

20

Si APD/CMOS Development History

1996 2009

APD’s Discrete 4x4 arrays

4x4 arrays wire bonded to

16-channel CMOS readout

32x32 arraysfully integrated with 32x32 CMOS readout

64 x 64 arrays 3D-integrated with 2 tiers of SOI CMOS 256 x 256 arrays

not to scale

Page 21: MIT LL No. MS-43282, ESC No. 09-1097

21

• Imaging system photon starved. Each detector must precisely time a weak optical pulse.

Microchip laser

Geiger-mode APD array

Color-codedrange image

LIDAR Imaging System

Page 22: MIT LL No. MS-43282, ESC No. 09-1097

22

A LIDAR Imaging Detector for NASA Planetary Missions

• These arrays will be fabricated for back-illumination with bump bonding, enabling high performance in a space-qualifiable focal plane.

• The design of the ROIC will be finished by the end of 2009, with fabrication starting in early 2010.

• Funding: $546,000 • Duration: 3 years (2008-2010)

Low field

High fieldmultiplier

Medium low field

absorber

Parameter Current Goal

Space-Qualifiable NO YES

Scalable to Large Format NO YES

CMOS ROIC Timing Resolution 250 ps 250 ps

Pixel Size 50 m 50 m

Multiplied Dark Current (@14 K) unknown <10-3 e/s/pixel

QE (350nm,650nm,1000nm)a 45%,65%,5% 45%,65%,10%

Operating Temperature 293 K 90 K – 293 K

Radiation Limit unknown 50 Krad(Si)b

Technology Readiness Levelc 2 4

Page 23: MIT LL No. MS-43282, ESC No. 09-1097

23

32x32 APD/CMOS Array with Integrated GaP Microlenses

Page 24: MIT LL No. MS-43282, ESC No. 09-1097

24

Laser Radar Brassboard System (Gen I)

• 4 4 APD array• External rack-mounted timing circuits• Doubled Nd:YAG passively Q-switched microchip laser

(produces 30 µJ, 250 ps pulses at = 532 nm)• Transmit/receive field of view scanned to generate 128 128 images

Taken at noontime on a sunny day

Page 25: MIT LL No. MS-43282, ESC No. 09-1097

25

Conventional vs LIDAR Image

Conventional image

Page 26: MIT LL No. MS-43282, ESC No. 09-1097

26

3D Imaging of Model Airplane

• Multiple-frame coincidence processing of ~3-4 frames removes isolated dark counts

• Image quality excellent due to low optical cross-talk between pixels

Airplane hanging on 6 mm rope

Color-code:1 m range display

3D Display of Processed Image,Probability of Detection Color-code

Single Frame

Page 27: MIT LL No. MS-43282, ESC No. 09-1097

27

Rotatable 3D Images of Multiple Objects

• 128x128 images recorded with scanned 4x4 array at 1.06 m• Coincidence processed to remove background/dark counts• Dark blue equivalent to <2 photon average return (right image)

Color-coded by Distance Color-coded by Detection Probability

Page 28: MIT LL No. MS-43282, ESC No. 09-1097

28

Outline

• Motivation– Why pursue photon-counting technology?– Why use Geiger-mode avalanche photodiodes

(APDs)?• Moore Detector for TMT• Heritage: LIDAR• Conclusions

Page 29: MIT LL No. MS-43282, ESC No. 09-1097

29

Conclusions

• Large-format photon-counting imaging detectors are within reach.

• We are funded to make 256x256 and megapixel devices.

• A 256x256 detector silicon-based array should be in testing by the end of the year.

• The devices will be implemented in a broad range of low light level and LIDAR timing applications.