Top Banner
MIMO Multihop Relay Channel from the Diversity Perspective www.comelec.enst.fr/~syang Ecole Nationale Supérieure des Télécommunications (ENST) 46, rue Barrault, 75013 Paris France May 3 rd , 2007 CNRS-LSS, Supélec Sheng Yang Joint work with Prof. Jean-Claude Belfiore
32

MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Apr 17, 2018

Download

Documents

TrầnNgọc
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

MIMO Multihop Relay Channel from the Diversity Perspective

www.comelec.enst.fr/~syangEcole Nationale Supérieure des Télécommunications (ENST)

46, rue Barrault, 75013 ParisFrance

May 3rd, 2007CNRS-LSS, Supélec

Sheng YangJoint work with Prof. Jean-Claude Belfiore

Page 2: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

LAN

How to cooperate to optimize the diversity ??

Page 3: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Outline

• System Model and Assumptions

• Part I : Amplify-and-Forward

• Part II : Achieving the Upper Bound via Partition

• Conclusions

3

Page 4: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Outline

• System Model and Assumptions

• Part I : Amplify-and-Forward

• Part II : Achieving the Upper Bound via Partition

• Conclusions

Page 5: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

System Model and Assumptions

• N-hop channel, N+1 virtual nodes equipped with multiple antennas.

• Rayleigh slow fading, i.i.d.

• Node # i can only hear node # i-1.

• All relays work in full-duplex mode (generalization to half-duplex mode trivially).

• Channel state information (CSI) at receiver only.

source destination...

5

... .........relays

n0 n1 nN-1 nN

Page 6: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

• N MIMO subchannels

• Transmitted signal is function of received signal

• The relaying functions depends on the relaying strategy.

• Same transmit power constraint is imposed for all nodes.

6

channel 1 channel N

Page 7: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Diversity-Multiplexing Tradeoff[Zheng and Tse, IT 03]

Definition

A channel is said to have a diversity-multiplexing tradeoff (DMT) if for each multiplexing gain ,

and .

7

Definition

Two channels are said to be equivalent if they have the same DMT.

Page 8: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Outline

• System Model and Assumptions

• Part I : Amplify-and-Forward

• Part II : Achieving the Upper Bound via Partition

• Conclusions

Page 9: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

• Each antenna simply normalizes the received signal to the same power level

• The end-to-end MIMO channel is

9

Amplify-and-Forward (AF)

channel 1 channel N

.

.

Page 10: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Rayleigh Product Channel

Lemma

The AF multihop channel is equivalent to the Rayleigh product (RP) channel defined by

with

.

We identify the AF multihop channel with the RP channel.

10

Page 11: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

DMT of the Rayleigh Product Channel

Theorem

The DMT of the (n0,n1,...,nN) RP channel is a piecewise-linear function connecting the points (k, d(k)), where

11

• For N=1, the DMT is

• For N=2, the DMT is

.

.

.

with being ordered values of (n0,n1,...,nN).

Page 12: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Properties of the DMT (I)

12

• Only depends on the ordered version of (n0,n1,...,nN).

• The diversity bottleneck of the RP channel is an Rayleigh channel, since

.

Page 13: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Properties of the DMT (II)

13

The DMT equivalence class is uniquely represented by the minimal form.

Theorem (Reduction)

The (n0,n1,...,nN) channel is equivalent to the channel if and only if

( )

• In particular, iff .

Definition

is said to be the minimal (horizontal) form if is the minimum integer such that is satisfied. is the order of the RP channel.

( )

Page 14: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Intuition from the DMT (I)

14

Rayleigh MIMO channel

If k is the “network flow”, then d(k) is the minimum “cost” to limit the network flow to k. In particular, d(0) is the “disconnection cost”.

... ... ... ...

......

......

Page 15: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Intuition from the DMT (II)

15

Rayleigh product channel

Page 16: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Example : (2,2,2)

16

basis change

diversity 3!!

diversity 4

canonical basis

Page 17: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Example : The (5,...,5) Channel

17

0

5

10

15

20

25

0 1 2 3 4 5

multiplexing gain

dive

rsity

gai

n

Page 18: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Outline

• System Model and Assumptions

• Part I : Amplify-and-Forward

• Part II : Achieving the Upper Bound via Partition

• Conclusions

Page 19: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Upper Bound on the Diversity

19

• Proved using the cut set bound or data processing theorem.

• The diversity bottleneck of the upper bound is one of the subchannels. Generally larger than the AF diversity.

Theorem

The DMT of the (n0,n1,...,nN) multihop channel with any relaying strategy is upper-bounded by

.

UB AFdiversity

Page 20: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Serial Partition

• The all-DF scheme partitions the multihop channel into N serial subchannels.

• In general, K serial AF subchannels by K-1 intermediate decoding nodes D1, ... ,DK-1, and the DMT is

• Smaller partition size means lower complexity.

The DMT upper bound is achieved when all relaying clusters have full antenna cooperation and the decode-and-forward (DF) scheme is used.

.

20

Page 21: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Example : (3, 1, 4, 2)

21

diversity 2

diversity 3

diversity 33 4 8

3 2

3 8

all DF

partial DF

partial DF

Page 22: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

22

Out

age

Prob

abili

ty

Received Eb/N0

!"!#$

!"!#%

!"!#&

!"!#!

!"'##

# % ( ) !& !* !+ &! &$ &, %#

-./0123456707898/:

"7;<#=>?@

ABC3&3?4DEA993FBC3&3?4DE

=%C!@'=!C$C&@C3&3?4DE=%C!C$@'=$C&@C3&3?4DE

All AF All DF(3,1)+(1,4,2)(3,1,4)+(4,2)

!"!#$

!"!#%

!"!#&

!"!#!

!"'##

# % ( ) !& !* !+ &! &$ &, %#

-./0123456707898/:

"7;<#=>?@

ABC3&3?4DEA993FBC3&3?4DE

=%C!@'=!C$C&@C3&3?4DE=%C!C$@'=$C&@C3&3?4DE

!"!#$

!"!#%

!"!#&

!"!#!

!"'##

# % ( ) !& !* !+ &! &$ &, %#

-./0123456707898/:

"7;<#=>?@

ABC3&3?4DEA993FBC3&3?4DE

=%C!@'=!C$C&@C3&3?4DE=%C!C$@'=$C&@C3&3?4DE

!"!#$

!"!#%

!"!#&

!"!#!

!"'##

# % ( ) !& !* !+ &! &$ &, %#

-./0123456707898/:

"7;<#=>?@

ABC3&3?4DEA993FBC3&3?4DE

=%C!@'=!C$C&@C3&3?4DE=%C!C$@'=$C&@C3&3?4DE

!"!#$

!"!#%

!"!#&

!"!#!

!"'##

# % ( ) !& !* !+ &! &$ &, %#

-./0123456707898/:

"7;<#=>?@

ABC3&3?4DEA993FBC3&3?4DE

=%C!@'=!C$C&@C3&3?4DE=%C!C$@'=$C&@C3&3?4DE

Example : (3, 1, 4, 2)

Page 23: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Distributed Schemes

23

• In most cases, no intermediate decoding is possible.

• Distributed space-time processing is needed.

Example (1, n, 1)

...• Relays do the coding [Jing and Hassibi, TWC06]: linearly

process the received signal in different ways and forward.

• Source does the coding [Elia et al., Allerton05]: only one relay is used at a time, n independent parallel channels in the time domain.

Page 24: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Parallel Partition

24

Example (2, 2, 2)

Lemma

There exist exactly independent paths in an (n0,n1,...,nN) multihop channel.

Theorem

parallel AF subchannels are enough to achieve the maximum diversity.

1

1

1

1

Option I

2

2

Option II

Page 25: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Flip-and-Forward

25

Both maximum diversity gain and multiplexing gain are achieved in a completely distributed way !!

+

-

Theorem

By creating parallel AF subchannels, the Flip-and-Forward (FF) scheme achieves the maximum diversity. And the DMT is lower-bounded by that of the AF scheme.

-

Page 26: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

26

Flip-and-Forward : Generalization

Page 27: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

27

+

- --

Flip-and-Forward : Generalization

Page 28: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Non-Independent Partition

28

• Independent partition is not a necessary condition for maximum diversity.

• The size of non-independent partition is smaller than the independent one.

Partition size is two instead of four!!

Example (2, 2, 2, 3)

Page 29: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Coding the Multihop Channel

29

• With the DF scheme, the source and the intermediate decoding nodes use DMT-achieving codes, e.g., the Perfect codes [Oggier et al. IT06, Elia et al. IT06].

• With the FF scheme, the relays flip (and amplify) the received signal in a coordinated way to create K parallel AF subchannels . The source transmits an M x L matrix in the subchannel , i.e.,

The DMT-achieving ST codes with minimum delay is proposed in [Yang and Belfiore, ISIT06] with L=M. Hence the total coding delay is .

.

Page 30: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

30

Sym

bol E

rror

Rat

e

Received Eb/N0

Performance : AFF vs. AF

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 3 6 9 12 15 18 21 24 27 30

Symbol Error Rate

Eb/N0(dB)

2222, AFF vs AF

(2,2,2,2), AFF(2,2,2,2), AF(2,4,3), AFF(2,4,3), AF

(2,2,2,2) AFF (2,2,2,2) AF (2,4,3) AFF (2,4,3) AF

!"!#$

!"!#%

!"!#&

!"!#!

!"'##

# % ( ) !& !* !+ &! &$ &, %#

-./0123456707898/:

"7;<#=>?@

ABC3&3?4DEA993FBC3&3?4DE

=%C!@'=!C$C&@C3&3?4DE=%C!C$@'=$C&@C3&3?4DE

!"!#$

!"!#%

!"!#&

!"!#!

!"'##

# % ( ) !& !* !+ &! &$ &, %#

-./0123456707898/:

"7;<#=>?@

ABC3&3?4DEA993FBC3&3?4DE

=%C!@'=!C$C&@C3&3?4DE=%C!C$@'=$C&@C3&3?4DE

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 3 6 9 12 15 18 21 24 27 30

Symbol Error Rate

Eb/N0(dB)

2222, AFF vs AF

(2,2,2,2), AFF(2,2,2,2), AF(2,4,3), AFF(2,4,3), AF

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 3 6 9 12 15 18 21 24 27 30

Symbol Error Rate

Eb/N0(dB)

2222, AFF vs AF

(2,2,2,2), AFF(2,2,2,2), AF(2,4,3), AFF(2,4,3), AF

Page 31: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Outline

• System Model and Assumptions

• Part I : Amplify-and-Forward

• Part II : Achieving the Upper Bound via Partition

• Conclusions

31

Page 32: MIMO Multihop Relay Channel - l2s.centralesupelec.fr Multihop Relay Channel from the Diversity Perspective syang Ecole Nationale Supérieure …

Conclusions

• Both distributed and non-distributed relaying schemes are proposed for the MIMO multihop channel.

• Maximum diversity gain is achieved via partition : serial or parallel.

• Serial partition is intermediate decoding, when and where to decode.

• From parallel partition to flip-and-forward, completely distributed, minimum relaying delay and complexity.

• DMT-achieving coding schemes available.

Thank you for your patience!!32