Top Banner
308

Miller - Internal Flow System (1)

Dec 10, 2015

Download

Documents

Rodrigo Saraiva

Perdidas de carga en tuberias
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Miller - Internal Flow System (1)
Page 2: Miller - Internal Flow System (1)
Page 3: Miller - Internal Flow System (1)
Page 4: Miller - Internal Flow System (1)
Page 5: Miller - Internal Flow System (1)
Page 6: Miller - Internal Flow System (1)
Page 7: Miller - Internal Flow System (1)
Page 8: Miller - Internal Flow System (1)
Page 9: Miller - Internal Flow System (1)
Page 10: Miller - Internal Flow System (1)
Page 11: Miller - Internal Flow System (1)
Page 12: Miller - Internal Flow System (1)

11.1. Introduction 165

11.2. Inlct conditions and Rcynolds numbcrs 165

11.3. Conica! diffuscrs 167 11.3.1. Frcc dischargc - Rcynolds numbcr lo6 and thick inlct boundary laycr (clars 1) 169 11.3.2. Frcc dirchargc - Rcynolds numbcr o f l o 6 and thin inlct boundary laycr (claas 1) 169 11.3.3. Long outlct pipc - Rcynolds numhcr o f l o6 a n d a thick inlct boundary layer (clirs 1) 169 11.3.4. Long outlct pipc - thin inlct boundary laycr (clars 2) 170 11.3.5. Short outlct pipc - O t o 4 diamctcrs (claas 2) 170 11.3.6. Examplc 171

1 1.4. Rectangular diffitscrs 172 11.4.1. Frcc dischargc - Rcynolds numbcr l o6 and thick inlet boundary laycr

(clars 1 for A S >0.5) 173 11.4.2. Outlct passagc 173 11.4.3. Asymmctric diffusion 173

11.5. Annular diffuscrs (class 3) 174

11.6. Curvcd wall diffuscrs (class 2) 174 11.6.1. Diffuscrs witli a frcc dirchargc'175 11.6.2. Diffuscrs with an outlct pipc or parsagc 175

11.7. Croppcd diffusers 176 11.7.1. Examplc 176

11.8. Circular t o rectangular diffusing transitions 177

11.9. Vancd Diffuscrs (class 2) 178 11.9.2. Examplc 180 €S1 U@ ,CQS.

*,0n~UL 12. Cornbined Turning and Diffusing Flow 183

12.1. Introcluctioti 183 12.1.1. Rcynolds numbcr (clars 3) 184

12.2. Dcsign rccommcndations for curvcd diffuscrs 185 12.2.1 Baris for dcsigns 185 12.2.2. Minimum Icngths and loss cocfficicnts (clara 2) 185 12.2.3. Diffuscr arrangcmcnts 187

12.3. 9O0 bcnd-spaccr-diffuscr combinations (class 1) 189

12.4. Effcct o i hend radius ratio (class 2) 198

12.5. Eficct o í bcnd anglc (class 2) 200

12.6. Effcct o i inlct boundary Iaycr thickncss (class 2) 203

12.7. Effcct of aspcct ratio (class 3) 203

12.8. Diffuscr-spaccr-hcnd combinations (class 2) 208

12.9. Compositc turning diffuscrs (class 2) 210

12.10. Curvcd wall diffuscrs 212

12.1'1. Corrcctions for bciid-difluscr and diffuscr-bend'intcractions 216' 12.11.1. Dcnd-,pacer-dlffurcr lntcraction corrcctlon f a c t o ~ r Cb.d (class 2) 216 12.1 1.2. Diffuscr-spaccr-bcnd intcraction corrcction factors Cd.b (class 2) 218

13. Dividing and Cornbining Flow 220 13.1. lntroduction 220

13.1.1. Rcynolds numbcr (class 3) 221 13.1.2. Cross-scctional rhapc (clars 2) 221

13.2. Sliarp-cdged combining 'T's (class 1) 221 13.2.1. lnlct and outlct condiiions (clasr 2) 228

13.3. Effcct of radii on combining 'T' cocfficients (class 2) 228 13.4. Symmctrical combining junctioris 230 13.5. Sharp-cdgcd dividing "i"s (class 2) 233

13.5.1. lnlct and outlct conditions (clasa 2) 233 13.5.2. Examplc 234

Page 13: Miller - Internal Flow System (1)
Page 14: Miller - Internal Flow System (1)

13.6. I.:I'I'cci oI' raclii oii ilividiiip "1" c i icf l ic ie i i~s 237

13.7. l inp r t~vcd pcrlr>riiiaiicc dividiiig "r's (class 2) 237 . .

13.8. Syniinciric:il diuidiiig juiict ions 237 . . , ., , .

. . 13.3. 4-\v;iy dividiiig juiiciioii (class 2) 239

13.10. C:Ticct ol crt>ss-scctiotinl shiipe (i:lass 2) 240 ' :

13.1 1. Loss cocrficieiiis for Iiolcs iii pipe wails (class 2) 246 . . . . . . 13.1 1.1. Suriioii flow inio pipc 246

j . . . . 13.1 1.2. Dirchiir~c from a pipr 246 . .

13. I Y . hI;iiiiI'oI<ls 2 4 8 19.1?.1. Soluiioii iiiciliud 248 8 ' . :

19.1 2.2. Bxunplcs 250 . . ,. . . . . i

14 . Misccllnncous Systeni C o m p o n r n t s 260 . ,

. . . . . . . . . . . . . . . 14.1. Iiirr<idiiclion 2 6 0 ' . . . , , , 1 4 . 2 Oril ices, scrcciis 2 n d perrora tcd platcs 262

14.2.1. Sharp cdgc iliin orificcr (chrs 1) 262 . . 14.2.2, Shorp r<lgci.l long orificcs RiA000 (clasr 2) 262 . ,

14.2.3. SIinrp<dge<l pcrforarcd platsr (c1a.s 2) 265 : . , ,

I.I.Z:l. ICuund wire scrernr and nc1iin.q (clasr 2) 265 : ! , . . 14.2.5. 'i'r:asIiracks (class 2) 265 1.1.2.6. Ir.>lnioil i>l~iiruciioiis iii pipes aiid parragcs.(clasi 9) 268 l4.2.7. Iloiicycuiiibs (clrsr 2) 268

. , .

14.3. 1)iffcrenii:il I l i ~ w ineicrs (class 2 ) 268 . . , , . . , . . . . , . .". . . .

14.4. I i i l e~s ;iliJ coii1i;iciioiis 268 . . . . . . .J.,,

. . 14.4.1. lnlcis (clasr 2) 268 ' . . , ,:,,e ;.:: , . . . . . . _ . . . . . "':,r# 1K.4.2. Cuiiirnciiuns 270 ._. . / :,. . .

14.5. I,:xp;msions ;iiid I'rrc discliarge iiozzles 270 . . .

. ,. . .

. 14:5.1: Alirupt cxpansions (clars 1) 270 ' '

i4~5.2. ]:res dircliargc noimlcr (class 2) 270 ' . ,. .,:.. ' , , , . . l . Valves 2 7 0 . . . . . . . . . . . .

. . . . . , . ~ : . . . _ . , , .. ::., . . . . . . . . . . . .:. .

14.6.1. nallvaivcs (class 2) 271 , . : : . ! ' . l i ~ j.: . . . . : :

14.6.2. nuitcrfly valvcs (class 2) 277 . . . .

, . 14.6.3. Uia~hrapm valvcs (clars 31 271 A . . . . . 1 ! t . . . . , , . - 14.6.4. Caie znd rluicc valvcs (clarr 2) 273 . , . .

. . . . . 1 . 5 . Clobc, 'Y'and angl! valvcs (clasr 3) 274 , , , . ' ' I : : .

14.6.6. Yoppci valiicr (cl=rr 3) 275 . . : . : . ', . : : ' ,

Pl.G.7.. Plug valvcr(class 3) 275 . . . s . . ., .> : ! ,< , ; ! . . , . . . . , . . l.l.G:8. Ili:flux nnd chcck valvcs 275 : ' , : : )

,,, . !:, , : ,:., '

. . , . . ' . i . . I . , , . . I ' . > . . , id. -;

.l4:7.- ' ,I.amiiiai. Ilow 276 , .

. . . . ... . . . '14.7.1. Sniooth inlets (class 2) 276 , : . : :

I ' :~ . .i 14.7.2. Sl~arprdgcd oriíiccs (claís 3) 279 . , , . , , , : . : . . . .

,: 14.7.3. I.ong orificcs (clnrr 3) 279 , . ,

. . J.

' fik.7!.). Iliiund iv i rc rcrcciis (clasr 3) 279 . . . . . . . . . . . , , , . . 1 . . , .

7 5 Valvcs (clair 3) 279 . . . . . . . . . . . . . . . : . : , : . : 8 . .

15. Sources of In fo rmat ion on Kelated Subjects 282 : , ; . . . . . . . . . . . .

15.1. Introdiicrioii 282 ..: . ; , , / . . . . : . . , . 8

. . . . ~ . , . . . . . . . . . . . . . . . . . .., 15.2. Cencral sourcc- o1 d a t a 282 . , . .: .- : 15.3. Coniprissiblc fl"w 282 . . . . . , . 4: 15.4. Two-pli.:sc l l o w , Iioiling arid non-Newtonian flows 283 . . t .

15.5. P i p c ~ ~ i c i \ v o r k s 283 . : . , ~ ,~ . . . . . . .

15.6. Fluicl in;iclii~ic-sysiciii iiiicracrioiis 284 , . . ,, . ' J, ,.

15.7. I.al>yriiiiIi sciils 2 8 5 : . . . : . i . : . . . ; . . . . .

15.8. ' F l o ~ i i i ~ ~ u r c i i i c i i i 285 . . . . . . . . . 15.9. "Fhw ilirougli tube 1)undles 285 . . 1 . . . t . ~. i.

15.10. Ad<l i t ivcs 285 , . i . . . . i /

15.1 1. 1:loiv i i i I ~ i o l o ~ i c a l sysieins 285 , , .

15.12. ~ o k c :iiid vil>rdiioii 2 8 5 J ' x;;

i 1 - .. ,

. , .., . .... 1 , , . . , . . ,

Page 15: Miller - Internal Flow System (1)

Symbols, Non -dimensional Ratios and Pressure Definitions

Flow distribution parameters In fliiid mcchanics thc practicc is to reduce al1 gcomctric and llow paramctcrs t o non- dimensional lorm by thc sclcction of appropriatc and gcncrally acccptcd non-dimcnsionalising lactors. I r is oiily wlicn a calculation lor a p:irticiilar flow situation is rcqiiircd that dimensional quantitics are involvcd.

Prcscnt undcrstanding o l intcrnal flows is not sufficient to dcvclop non-dimensional paramctcrs wliicli describe flow distributions iii such a manner tha t thcy can be uscd lor componciit pcrlormancc prcdictions. ln ordcr t o havc somc gcncral and 'cnginccringly' uscful dcscriptions o l flow distril~utiOns thc lollo\ving nrc uscd in tlic tcxt:

Tliin boiindary laycr - A flow which is ncarly Lnc-dimensional. such as thai obscrvcd in the lirst diametcr r ~ l pipc lollowing a smooth contraction.

Tliick Boundary 1;iycr - A non-swirling flow which has a vclocity and turbulcncc distri- b i~ t ion appropriatc to a pipc flow 10diatiietcrs alter a component siich as a contraction, orilicc platc, suridcn cxpansion, scrccn or otlicr ricvicc which dcics no t crcatc strong swirl.

Devclopcd flow . A flow wliich h a trivcrscd 3 0 or morc diamctcrs o l straigli! pipc.

Symbols

Thc gcncral practicc is t o define symbols as they occur in cach cliaptcr. 0:afy thc principlc symbols are listcd bclow.

A cross-scctional arca A constant a prcssurc w;ivc vclocity B constant b width or brcadih C corrcction factor C constant Cp prcssiirc rccovcry

c~>cll icicnt D hydraiilic diamctcr

(4 AlJ'J rl pipc diamctcr / I'rictioii coclliciciit g gravity II total hcad II* non-dimcrisional hc:i<l AII total hcad loss h hcad K loss cocllicicnt k roughncss coclliciciit L lcngtli I lcngih

Units . - Units'

N diffuscr lcngih m P total pressurc N/ml (Pa) AP total prcssurc loss N/ml (Pa) P, pcrimcter (wcttcd pcrimeter) m p static prcssurc N/m2(Pa) Q flow ratc m' /S

Q* non-dimcnsi~inal floiv . . R radios in Re Hcynolds nunibcr r radius m ' t timc , S

At time stcp S ' <

U nic;iii vclocity in/s AU vclocity cJianRc 4 s IV width , m

7 spccilic wcight N/m3 0 anglc dcgrccs , p absoluic viscosity , Nslm' v kincmatic viscosity . m2/s p dcnsity k d m 3 o cavitation paramctcr

Page 16: Miller - Internal Flow System (1)

Pressure definitions . . . . . .

Ilydi-aulic cnginccrs oftcn ded witli fluids flowing from one level to another, for eiainplefrom; oiie rescrvoir i o uioilirr. In dcscribing systcin performance i t is appropriate to use differcnces' in lcvcls iir Iiciiils cxpi-csscd iii meires of fluid. Low speed i r aiid gas ílows are usually. I I I L . : L S L I ~ C ~ usiiig !iiaiii~iriciers which register pressures e. a displaccment of a fluid column. For ilirsr illid titlier reuoiis it Iias become common, in'certain branches of íluid mechanics, t o use ~ I i c reriii toi:il 1ic:icl :ind vclocity Iiead in preferente to total prcssurc w d velocity prcssure. 'Cliis p rx i i ce is followed i r i tlic presciit text as it reduces the monotonous use of pressure terms :uid folli)ws ilie coiivciitioii adopted witli SI units of continuiiig, whcrc appropriate, t o rxpress . prcssurcs i i i lcriiis o í " ~ T C S S U I < : hcads". l t sliould always bc remeinbcred that although heads. are iakcii as ilic Iiciglii o l a licluid colunin tlie units of head are those of pressure, N/m2 (Iieight

liquid c~luii i i i (in) X density (kgjin3) X gravity (in/s".): . . .

siaiic prcssui-c - thr prcssure acting equaily in ail directions a t a point in a fluid. velocity prcssurc - givrri by 1 / 2 p U , d s o called !he kinetnatic pressure., total prcssiire - tlie sum o í the sedtic .and velocity pressures. ioral pi-cssurc loss - tlic differeiice in total prrssures betwccn two points related to a '

commoii daturn. As al1 prcssurc lossrsin ihe text are total prcssure losscs the words t o t d 2nd presk"'re are often dropped.

~ : i ~ i g ~ p r c s u ~ - ilie pressurr above or below local atinoipheric pressure, if the gauge pressure is lcss than-a~mos~her ic prcssure it is aisp cailed tlir vacuum pressure.

:il)solulc pressurc . ilie pressurr above zero. given b y the sum of the locd atmospheric prrssure md tlle gaugc pressure. , .

atmosphcl-ic (baronictric) ~>rcssurc - tlie local pressure measuredwi tha . . . . barometer. siaiidard aiiiiosplicric ; , , . I . . . . . . prcssurc - cqiiiil to 101.325 k~ / i i i " vapour ~ i ~ e s s i ~ r e - ihe pressure cxertrd whcii a liquid is in cquilibriuni with its own

vapour. piezi>inciric o r Iiydr.iulic - tlie Iicad &ovc a daturn t o which fluid rises in a tube connccted Iicad to a tapping in a pipe p r passage, or the water level in a reservoir.

velocity Iieacl - givcn by U / 2 g !I ' i towl heiid - the sum of the piezometric and velocity hcad.

ioial 1ic;id loss - ihe diffrrence in total head betwecn two points related t o a coninion daturn. As al1 hcad losses in the t rx t are total head

j/ losscs the words total w d head are often dropprd.

!! lnnnp Iicad - Iicad ycneraird by a yump given b y thc picromrtric head diffrrencc across tlie pump plus the diffcrence in velocity heads ,

betwecii outlct and inlct. !! ' v i ~ ~ > ~ i u r l i c x l - tlir hcad iri íluid exerrcd when a liquid is in equilibrium with its

own vapour.

Page 17: Miller - Internal Flow System (1)
Page 18: Miller - Internal Flow System (1)
Page 19: Miller - Internal Flow System (1)

1. lntroduction

'E: g E...

1.1. TYPES O F FLOW CONSIDERED

Intcrnal flow is conccrned with fluids flowing in pipcs, passagcs, ducts, conduits, ciilvcrts. tuiincls and components such ;L$ bcnds, diffiisers and hcat cxchangcrs. In tlic tcxt, "pipc" is iiscd for flow through circularcross-scctions and "passage" if the cross-scction is non-circular. Conlincd in pipcs m d passagcs most liquids and gasses bchave in a similar manncr so thc gcncral term fluid is appropriate and uscd throiighout thc text.

Exccpt for Chaptcrs G and 7, o n cavitation and transielit ilow, tlie prcscnt work is rcstrictcd to steady flow of a single phasc near Ncwtonian fluid. A Newtbnian fluid is charactcrised b y shc;ir stress bcing proportional t o strain with the constant of proportionality being the absolutc viscosity. Gencrally fully turbulcnt flows arc assumcd except in discussion o n important aspccts o l low Rcynolds numbcr flows. Tiirbulent single phase intcrnal flows are o f coiisidcrablc cnginccring intcrcst but are thc cxception in naturc. For instancc tlic most common forin of pump, thc hcart, opcratcs cyclically in thc laminar to tiirl>ulcnt tr;insition rcgion, pumping a complcx fliiid with living cclls and solids i i i sus\>cnsion, whilst tlic flow of niitricnts ir1 pl;ints occurs wliolly in thc 1;iminar rcgion.

In practicc thc flow of blo<id and othcr mixturcs is so complcx that singlc phasc ítow pnramctcrs havc to bc uscrl, with corrcctions applicd t o account for dcpartiircs from singlc phasc .conditiuns. Many o f thc flow plicnomena of single phasc flow iipply to mixturcs, providcd scparation or re-distribution of phascs does n o t occur due t o accelcration forces.

Thc tcrm steady flow is uscd in rclation to overall systcm ilows. Violcntly unstcady flow may bc prcscnt in onc or morc componcnts, bu t providcd unstcady flow in componcnts docs not aitcr tlic ovcrall systcm prcssurc and flow by morc than a pcrccnt o r so, stcady flow can bc said io cxist. Enginccring flows arc usually turbulent, with local velocities and pressurcs varying continually. Conccptually, thc flow can bc visualised as having mean valucs of vclocity and prcssurcs with fluctuating componcnts supcrimposcd.

Virtiially n o iniormation is availablc o n flow structurc duriiig transients and the assumption has to bc madc tliat stcady flow loss coefficicnts can be used. In practicc, using steady flow cocfficicnts a l o n ~ with thc transient dynamic cquations, it is found that for a singlc flow wiriation, c:ilciilatcd temporal and spatial prcssures and flows agrcc rcasoiiably wcll with mcasurcd valucs. Thc turbulcnt cddics rcsponsiblc for major cncrgy dissipation in interna1 flow Iiavc diamctcrs that can bc of tlic ordcr of one thousandth of the pipc diamctcr and thcy occiir in closc proximity to the boundarics. I t might bc cxpccted that, providcd a change in flow of onc pcrccnt occurs in the time for ten near wall cddies to pass a particular location, the flow could be considcrcd slowly varying and as an approximation, steady statc cocfficicnts would apply. Carrying this to thc cxtrcme, slowly varying conditions could bc assumcd, i f calculatcd in stcps, for any changc that occurrcd in a time longer than it t akes thc flow to travcl on.c pipc diamctcr. Achicving ncar stcady flow conditions in components may takc longcr than in pipcs. for :ilthriugh c n c r ~ y dissip:ition is iiltimatcly via thc samc sizc cddics as in pipcs, thcsr cddics arisc from vcry much Iiirgcr cdclics cauacd b y scparation and sccondarv flows. l'akiiig a typical largc cddy sizc as twcnty pcrccnt o f thc pipe o r componcnt tliamctcr, and assuming ten largc cddics havc to bc shcd to cstahlish a stcady flow ficld. c h a n ~ c s taking twicc thc timc for flow to travcl a pipc diamctcr could bc considercd slowly varying: Although prcssure losscs may approach thc stcady stñtc valucs in the time it takcs thc flow to travcl two pipc diamctcrs, th r vclocity and turbiilcnt structurc of tlic flow will not approach dcvelopcd conditions until tlic

INTRODUCTION 3

Page 20: Miller - Internal Flow System (1)

Ilow II:IS ira\~ersctI iliii-ty 01. 1111>re pipc diaiiiricrs. Loss c í i i i i s :uirl c;~Icu1aiio11~ o í pressurc losses in thc tcxt are for incompressible

Ilow. 'i'liis is i i c i rcs~i-iciion as rcgards liq~iids which havc prcssure wdve velocitics (vclocity oT souiid) oí ~ I i c ordrr u l 1000 m/s cornpared t o typical flow velocities of undcr 10 m/s - ecli~ivalciii io hlacli ii~iniber oT 0.0 l . For gasscs the pcrlormancc data can bc uscd directly for Ilo\vs al h.l~cli iiuiiihcr lcss ilim 0.2 . rquivslciit to 70 m/s for air at no rmd temperaiurc and prcssure. I T tlciisicy cliaiigcs arc signiíicaiit in loiig systcms, incomprcssiblc cdculations can be inildc by dividiiig up ihc systcin iind using inean densitics and pressures in diffcrent parts of ilic sysiciii. I'riividc<l correctioiis are applied to account Tor compressibility, loss coefficicnts ciiii L J C llbcd L I ~ 1 0 hl:~cIi iiunibcrs IJT 0.8. In tliis case ii is the local Mach nuinber ihai is iiiipi,rtaiii railicr i1i;ui a I\lacli nuiiibcr b a c d oii thc mcan íiow.

, . . , . . . . , . ., , . .,

1.2. SYSTEM O F UNITS AND FLUID PROPERTIES . .

. . . . . . . . : . . . . . . . . . . . . 1.2.1. SI UNITS . . . . . . . .

111 SI iiiiiis niass is iiic;isurcd in kilogr&ns, kg; lcngth in m i t i n , m; and forcc is measurcd in Ncwioiis, N . A I\'cwi»ii is elie íorce requircd to acccleratc 1 kg a t a [ate of 1 m/s2.

, . .: , , .

1N = l kg X 1 m/s2 ,

. . .. . i :; . . . . . . . . . . . . . ,:. , . ! ;,, .,' ., . , . . . . . . . . . . .

. . . 1.2.2. PRESSURE . . . . . . , . .

. . . . . .,, : . :

l'lic b x i c pressurc uiiit is ihe Newton per square me&, N/ml, which is given the namc. . . . . . . . . . . . . .

Pascal, Pa. . . . . , : , . . :.,. , . .: .,: . .

\Vlicn ilic oiily xseleration is ihai duc t o gravity;of 9.81 m/s2, holding an apple o r a s m d glass oT wntcr iiivolves cxcriing a íorce ol roughly one Newton. If the glass of water is poured ovcr il ~ I C L ~ C S C I L I ~ ~ C Lray it would f o m a layer approximately 0.0001 m decp. he basic unit o í prcssure is. ihcrcíorc, a rclatively smdl unit and in enginecring the kilo Pascal, kPa, c q u d t o 10' N/ni1, is ol'tcii usetl. Anotlicr prcssure unit is t heba r , which is equal to las Pa; As the l>;iscal Iios iioc Touiiil gcricrd accepiance N/ml is gcnerally used in the text.

. , . . : :

, I ;

1.2.3. DENSITY . . . . . , . , .

! ...

Tlic iiiass pci- uiiit volunle is reícrred lo as the fluid d e n s i t y , ~ . Units o l density are:.

. . AL iioriiinl tciiipcr;ilurcs 2nd pressures ihe dei;sity of water'is approximately 1000 kg/m3

. : . , . . : . aiid elic dciisicy ol 'a ir is approxirnatcly 1.2 kg/m3.

. . : , 8 . . , . ..

1.2.4. SPECIFIC WEIGHT . . . . , . . . . . ..: ..>.

. . . . . . . . . . . < . . t . :

'I'lic-sliecilic wciglit 7 (=pg) is tlie weighi of fluid per unit volume and has dimcnsions of force ~pcr unic volurnc wliicli are: . . . . . . . . . . ,

Page 21: Miller - Internal Flow System (1)
Page 22: Miller - Internal Flow System (1)
Page 23: Miller - Internal Flow System (1)
Page 24: Miller - Internal Flow System (1)
Page 25: Miller - Internal Flow System (1)
Page 26: Miller - Internal Flow System (1)
Page 27: Miller - Internal Flow System (1)
Page 28: Miller - Internal Flow System (1)
Page 29: Miller - Internal Flow System (1)
Page 30: Miller - Internal Flow System (1)
Page 31: Miller - Internal Flow System (1)
Page 32: Miller - Internal Flow System (1)
Page 33: Miller - Internal Flow System (1)
Page 34: Miller - Internal Flow System (1)
Page 35: Miller - Internal Flow System (1)
Page 36: Miller - Internal Flow System (1)
Page 37: Miller - Internal Flow System (1)
Page 38: Miller - Internal Flow System (1)
Page 39: Miller - Internal Flow System (1)
Page 40: Miller - Internal Flow System (1)
Page 41: Miller - Internal Flow System (1)
Page 42: Miller - Internal Flow System (1)
Page 43: Miller - Internal Flow System (1)
Page 44: Miller - Internal Flow System (1)
Page 45: Miller - Internal Flow System (1)
Page 46: Miller - Internal Flow System (1)
Page 47: Miller - Internal Flow System (1)
Page 48: Miller - Internal Flow System (1)
Page 49: Miller - Internal Flow System (1)
Page 50: Miller - Internal Flow System (1)
Page 51: Miller - Internal Flow System (1)
Page 52: Miller - Internal Flow System (1)
Page 53: Miller - Internal Flow System (1)
Page 54: Miller - Internal Flow System (1)
Page 55: Miller - Internal Flow System (1)
Page 56: Miller - Internal Flow System (1)
Page 57: Miller - Internal Flow System (1)
Page 58: Miller - Internal Flow System (1)
Page 59: Miller - Internal Flow System (1)
Page 60: Miller - Internal Flow System (1)
Page 61: Miller - Internal Flow System (1)
Page 62: Miller - Internal Flow System (1)
Page 63: Miller - Internal Flow System (1)
Page 64: Miller - Internal Flow System (1)
Page 65: Miller - Internal Flow System (1)
Page 66: Miller - Internal Flow System (1)
Page 67: Miller - Internal Flow System (1)
Page 68: Miller - Internal Flow System (1)
Page 69: Miller - Internal Flow System (1)
Page 70: Miller - Internal Flow System (1)
Page 71: Miller - Internal Flow System (1)
Page 72: Miller - Internal Flow System (1)
Page 73: Miller - Internal Flow System (1)
Page 74: Miller - Internal Flow System (1)
Page 75: Miller - Internal Flow System (1)
Page 76: Miller - Internal Flow System (1)
Page 77: Miller - Internal Flow System (1)
Page 78: Miller - Internal Flow System (1)
Page 79: Miller - Internal Flow System (1)
Page 80: Miller - Internal Flow System (1)
Page 81: Miller - Internal Flow System (1)
Page 82: Miller - Internal Flow System (1)
Page 83: Miller - Internal Flow System (1)
Page 84: Miller - Internal Flow System (1)
Page 85: Miller - Internal Flow System (1)
Page 86: Miller - Internal Flow System (1)
Page 87: Miller - Internal Flow System (1)
Page 88: Miller - Internal Flow System (1)
Page 89: Miller - Internal Flow System (1)
Page 90: Miller - Internal Flow System (1)
Page 91: Miller - Internal Flow System (1)
Page 92: Miller - Internal Flow System (1)
Page 93: Miller - Internal Flow System (1)
Page 94: Miller - Internal Flow System (1)
Page 95: Miller - Internal Flow System (1)
Page 96: Miller - Internal Flow System (1)
Page 97: Miller - Internal Flow System (1)
Page 98: Miller - Internal Flow System (1)
Page 99: Miller - Internal Flow System (1)
Page 100: Miller - Internal Flow System (1)
Page 101: Miller - Internal Flow System (1)
Page 102: Miller - Internal Flow System (1)
Page 103: Miller - Internal Flow System (1)
Page 104: Miller - Internal Flow System (1)
Page 105: Miller - Internal Flow System (1)
Page 106: Miller - Internal Flow System (1)
Page 107: Miller - Internal Flow System (1)
Page 108: Miller - Internal Flow System (1)
Page 109: Miller - Internal Flow System (1)
Page 110: Miller - Internal Flow System (1)
Page 111: Miller - Internal Flow System (1)
Page 112: Miller - Internal Flow System (1)
Page 113: Miller - Internal Flow System (1)
Page 114: Miller - Internal Flow System (1)
Page 115: Miller - Internal Flow System (1)
Page 116: Miller - Internal Flow System (1)
Page 117: Miller - Internal Flow System (1)
Page 118: Miller - Internal Flow System (1)
Page 119: Miller - Internal Flow System (1)
Page 120: Miller - Internal Flow System (1)
Page 121: Miller - Internal Flow System (1)
Page 122: Miller - Internal Flow System (1)
Page 123: Miller - Internal Flow System (1)
Page 124: Miller - Internal Flow System (1)
Page 125: Miller - Internal Flow System (1)
Page 126: Miller - Internal Flow System (1)
Page 127: Miller - Internal Flow System (1)
Page 128: Miller - Internal Flow System (1)
Page 129: Miller - Internal Flow System (1)
Page 130: Miller - Internal Flow System (1)
Page 131: Miller - Internal Flow System (1)
Page 132: Miller - Internal Flow System (1)
Page 133: Miller - Internal Flow System (1)
Page 134: Miller - Internal Flow System (1)
Page 135: Miller - Internal Flow System (1)
Page 136: Miller - Internal Flow System (1)
Page 137: Miller - Internal Flow System (1)
Page 138: Miller - Internal Flow System (1)
Page 139: Miller - Internal Flow System (1)
Page 140: Miller - Internal Flow System (1)
Page 141: Miller - Internal Flow System (1)
Page 142: Miller - Internal Flow System (1)
Page 143: Miller - Internal Flow System (1)
Page 144: Miller - Internal Flow System (1)
Page 145: Miller - Internal Flow System (1)
Page 146: Miller - Internal Flow System (1)
Page 147: Miller - Internal Flow System (1)
Page 148: Miller - Internal Flow System (1)
Page 149: Miller - Internal Flow System (1)
Page 150: Miller - Internal Flow System (1)
Page 151: Miller - Internal Flow System (1)
Page 152: Miller - Internal Flow System (1)
Page 153: Miller - Internal Flow System (1)
Page 154: Miller - Internal Flow System (1)
Page 155: Miller - Internal Flow System (1)
Page 156: Miller - Internal Flow System (1)
Page 157: Miller - Internal Flow System (1)
Page 158: Miller - Internal Flow System (1)
Page 159: Miller - Internal Flow System (1)
Page 160: Miller - Internal Flow System (1)
Page 161: Miller - Internal Flow System (1)
Page 162: Miller - Internal Flow System (1)
Page 163: Miller - Internal Flow System (1)
Page 164: Miller - Internal Flow System (1)
Page 165: Miller - Internal Flow System (1)
Page 166: Miller - Internal Flow System (1)
Page 167: Miller - Internal Flow System (1)
Page 168: Miller - Internal Flow System (1)
Page 169: Miller - Internal Flow System (1)
Page 170: Miller - Internal Flow System (1)
Page 171: Miller - Internal Flow System (1)
Page 172: Miller - Internal Flow System (1)
Page 173: Miller - Internal Flow System (1)
Page 174: Miller - Internal Flow System (1)
Page 175: Miller - Internal Flow System (1)
Page 176: Miller - Internal Flow System (1)
Page 177: Miller - Internal Flow System (1)
Page 178: Miller - Internal Flow System (1)
Page 179: Miller - Internal Flow System (1)
Page 180: Miller - Internal Flow System (1)
Page 181: Miller - Internal Flow System (1)
Page 182: Miller - Internal Flow System (1)
Page 183: Miller - Internal Flow System (1)
Page 184: Miller - Internal Flow System (1)
Page 185: Miller - Internal Flow System (1)
Page 186: Miller - Internal Flow System (1)
Page 187: Miller - Internal Flow System (1)
Page 188: Miller - Internal Flow System (1)
Page 189: Miller - Internal Flow System (1)
Page 190: Miller - Internal Flow System (1)
Page 191: Miller - Internal Flow System (1)
Page 192: Miller - Internal Flow System (1)
Page 193: Miller - Internal Flow System (1)
Page 194: Miller - Internal Flow System (1)
Page 195: Miller - Internal Flow System (1)
Page 196: Miller - Internal Flow System (1)
Page 197: Miller - Internal Flow System (1)
Page 198: Miller - Internal Flow System (1)
Page 199: Miller - Internal Flow System (1)
Page 200: Miller - Internal Flow System (1)
Page 201: Miller - Internal Flow System (1)
Page 202: Miller - Internal Flow System (1)
Page 203: Miller - Internal Flow System (1)
Page 204: Miller - Internal Flow System (1)
Page 205: Miller - Internal Flow System (1)
Page 206: Miller - Internal Flow System (1)
Page 207: Miller - Internal Flow System (1)
Page 208: Miller - Internal Flow System (1)
Page 209: Miller - Internal Flow System (1)
Page 210: Miller - Internal Flow System (1)
Page 211: Miller - Internal Flow System (1)
Page 212: Miller - Internal Flow System (1)
Page 213: Miller - Internal Flow System (1)
Page 214: Miller - Internal Flow System (1)
Page 215: Miller - Internal Flow System (1)
Page 216: Miller - Internal Flow System (1)
Page 217: Miller - Internal Flow System (1)
Page 218: Miller - Internal Flow System (1)
Page 219: Miller - Internal Flow System (1)
Page 220: Miller - Internal Flow System (1)
Page 221: Miller - Internal Flow System (1)
Page 222: Miller - Internal Flow System (1)
Page 223: Miller - Internal Flow System (1)
Page 224: Miller - Internal Flow System (1)
Page 225: Miller - Internal Flow System (1)
Page 226: Miller - Internal Flow System (1)
Page 227: Miller - Internal Flow System (1)
Page 228: Miller - Internal Flow System (1)
Page 229: Miller - Internal Flow System (1)
Page 230: Miller - Internal Flow System (1)
Page 231: Miller - Internal Flow System (1)
Page 232: Miller - Internal Flow System (1)
Page 233: Miller - Internal Flow System (1)
Page 234: Miller - Internal Flow System (1)
Page 235: Miller - Internal Flow System (1)
Page 236: Miller - Internal Flow System (1)
Page 237: Miller - Internal Flow System (1)
Page 238: Miller - Internal Flow System (1)
Page 239: Miller - Internal Flow System (1)
Page 240: Miller - Internal Flow System (1)
Page 241: Miller - Internal Flow System (1)
Page 242: Miller - Internal Flow System (1)
Page 243: Miller - Internal Flow System (1)
Page 244: Miller - Internal Flow System (1)
Page 245: Miller - Internal Flow System (1)
Page 246: Miller - Internal Flow System (1)
Page 247: Miller - Internal Flow System (1)
Page 248: Miller - Internal Flow System (1)
Page 249: Miller - Internal Flow System (1)
Page 250: Miller - Internal Flow System (1)
Page 251: Miller - Internal Flow System (1)
Page 252: Miller - Internal Flow System (1)
Page 253: Miller - Internal Flow System (1)
Page 254: Miller - Internal Flow System (1)
Page 255: Miller - Internal Flow System (1)
Page 256: Miller - Internal Flow System (1)
Page 257: Miller - Internal Flow System (1)
Page 258: Miller - Internal Flow System (1)
Page 259: Miller - Internal Flow System (1)
Page 260: Miller - Internal Flow System (1)
Page 261: Miller - Internal Flow System (1)
Page 262: Miller - Internal Flow System (1)
Page 263: Miller - Internal Flow System (1)
Page 264: Miller - Internal Flow System (1)
Page 265: Miller - Internal Flow System (1)
Page 266: Miller - Internal Flow System (1)
Page 267: Miller - Internal Flow System (1)
Page 268: Miller - Internal Flow System (1)
Page 269: Miller - Internal Flow System (1)
Page 270: Miller - Internal Flow System (1)
Page 271: Miller - Internal Flow System (1)
Page 272: Miller - Internal Flow System (1)
Page 273: Miller - Internal Flow System (1)
Page 274: Miller - Internal Flow System (1)
Page 275: Miller - Internal Flow System (1)
Page 276: Miller - Internal Flow System (1)
Page 277: Miller - Internal Flow System (1)
Page 278: Miller - Internal Flow System (1)
Page 279: Miller - Internal Flow System (1)
Page 280: Miller - Internal Flow System (1)
Page 281: Miller - Internal Flow System (1)
Page 282: Miller - Internal Flow System (1)
Page 283: Miller - Internal Flow System (1)
Page 284: Miller - Internal Flow System (1)
Page 285: Miller - Internal Flow System (1)
Page 286: Miller - Internal Flow System (1)
Page 287: Miller - Internal Flow System (1)
Page 288: Miller - Internal Flow System (1)
Page 289: Miller - Internal Flow System (1)
Page 290: Miller - Internal Flow System (1)
Page 291: Miller - Internal Flow System (1)
Page 292: Miller - Internal Flow System (1)
Page 293: Miller - Internal Flow System (1)
Page 294: Miller - Internal Flow System (1)
Page 295: Miller - Internal Flow System (1)
Page 296: Miller - Internal Flow System (1)
Page 297: Miller - Internal Flow System (1)
Page 298: Miller - Internal Flow System (1)
Page 299: Miller - Internal Flow System (1)
Page 300: Miller - Internal Flow System (1)
Page 301: Miller - Internal Flow System (1)
Page 302: Miller - Internal Flow System (1)
Page 303: Miller - Internal Flow System (1)
Page 304: Miller - Internal Flow System (1)
Page 305: Miller - Internal Flow System (1)
Page 306: Miller - Internal Flow System (1)
Page 307: Miller - Internal Flow System (1)
Page 308: Miller - Internal Flow System (1)