Top Banner
Fatigue Estimation of Welds with FEA: Modeling, Criteria, Approaches, and Issues Introduction We ld Fatigue and Physi ca l Influencing Fact ors Me thods of Analysi s and Pr ediction and Application of FEA FEA Tool Development Specific t o Weld Fatigue Concluding Remarks WEAVER E GINEERING Seattle, Washington. http://www.weavere ng.com Presentation to SAE Fatigue Committee, Mike Weaver, October 2003, Cedar Rapids, Iowa
35

Mike Weaver

Apr 08, 2018

Download

Documents

viluk
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 1/35

Fatigue Estimation of Welds with FEA:Modeling, Criteria, Approaches, and Issues

• Introduction• Weld Fatigue and Physical Influencing Factors

• Methods of Analysis and Prediction and

Application of FEA

• FEA Tool Development Specific to Weld Fatigue

• Concluding Remarks

WEAVER E GINEERINGSeattle, Washington. http://www.weavereng.com

Presentation to SAE Fatigue Committee, Mike Weaver, October 2003, Cedar Rapids, Iowa

Page 2: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 2/35

 Factors in Weld Fatigue Life Prediction

LIFEFABRICATION

VARIANCE

DESIGN

LIMIT STATE

TRUE

LIMIT STATE

ANALYSIS

UNCERTAINTY

Page 3: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 3/35

Weld Fatigue and Physical Influencing Factors• Material State Variations: Mill Heat,

Electrode, Moisture

• Material Damage Due to Welding -

Hydrogen Cracking, Hot Short Cracking,

Lamellar Tearing, Other Base Metal Damage

• Fit-up and Joint Preparation.

• Process and Position

• Operator and Machine Variations

• Starts and Stops

• Sequence, Restraint, and Residual StressState

• Heat Affected Zone - Grain Structure, Local

Brittle Areas, Strength Mismatch

Impoverishment, Overaging, etc

• As Welded Profile - Local Stress

Concentrations• Flaw Density and nature.

• Load History and Environmental

Uncertainties -

Multi-axial Loading, Non-Proportional

Loading

Improvements:

- Mechanical: Burr Grinding, Machining, Peening

- Thermal: PWHT, TIG Dressing, Selective Spotand Line Heating.

- NDT: Improves distribution by truncating tail.

Page 4: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 4/35

 Methods of Analysis and Prediction

Per IIW Guidelines, Four

Categories:• Nominal Stress Method - Classical

Analysis

• Geometric (Structural, Hot-Spot)Stress Method

• Effective Notch Stress

• Fracture Mechanics … Fitness for 

Purpose

Page 5: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 5/35

 Methods of Analysis: Nominal Stress Method 

• P/A … Mc/I• Structural Load Path Variations in Criteria

• Weld Notch Effect in Criteria

• Joint Performances Tabulated and Classified invarious Codes, Design Guides, etc.

Page 6: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 6/35

 Methods of Analysis: Geometric Stress

• A.K.A. Structural Stress Method, HotSpot Stress

• Structural Load Path Determined by

Analysis or Physical Measurement

• Weld Notch Effect in Criteria• Joint Performances Classified based on

Weld Notch Geometry and Weld Quality.

Page 7: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 7/35

 Methods of Analysis: Effective Notch Stress

• Geometry of Weld Modeled to 1 mm Resolution

• Sharp Features Rounded with 1 mm radius to allow for fatigue notchsensitivity.

• One S-N curve. The Most Refined Stress Based Approach.

Page 8: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 8/35

 Methods of Analysis: Fracture Mechanics• da/dN material evaluations with∆K and R 

determined by Analysis.

• Detailed and Simplified Methods

• Tabulated (Simplified) Equivalent Stress

Categories for S-N Evaluation

• Fitness for Purpose Evaluations, As Fabricated

Quality Level, Joint Design

Page 9: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 9/35

 Application of FEA to Prediction Methods

• Nominal Stress: Beam Element Models

• Geometric Stress, Shell and Continuum Models

• Effective Notch Stress - Continuum Models or Shell Models with SCF

• Fracture Mechanics: Continuum Models with Flaws Modeled or FEA

Combined with Classical Fracture Mechanics

Page 10: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 10/35

 FEA Evaluation of Geometric Stress:

Continuum Models

• Examples of Hot Spot -

Plane Strain Evaluationof Condition (1 of )

Page 11: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 11/35

 FEA Evaluation of Geometric Stress:

Continuum Models

• Examples of Hot Spot -Plane Strain Evaluation

of Condition (2 of 3)

Page 12: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 12/35

 FEA Evaluation of Geometric Stress:Continuum Models

• Examples of Hot Spot -Plane Strain Evaluation

of Condition (3 of 3)

Page 13: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 13/35

 FEA Evaluation of Geometric Stress:

Shell Element Models

• A fair amount of Literature and Current Work on the Subject:

 Neimi, Radaj, Hobbacher - IIW

Page 14: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 14/35

 FEA Evaluation of Geometric Stress:

Shell Element Models

Page 15: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 15/35

 FEA Evaluation of Geometric Stress:Shell Element Models: Issues

• Nodal Stress Averaging

WELD

FREEEDGE

Correct TerminatedPart Element Selection

The Offending Elementfor Incorrect TerminatedPart Element Selection

Page 16: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 16/35

 FEA Evaluation of Geometric Stress:Shell Element Models: Issues

• Shell Element Cross Section Singularity(1 of 2)

Page 17: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 17/35

 FEA Evaluation of Geometric Stress:

Shell Element Models: Issues

• Shell Element Cross

Section Singularity

(1 of 2)

Page 18: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 18/35

 FEA Evaluation of Effective Notch Stress:Continuum Models

• Plane Strain for SCF

• Solid

• Resolution to 1 mm radius of sharp features

Page 19: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 19/35

 FEA Evaluation of Effective Notch Stress:SCF 

• Plane Strain Determination of SCF-Shell Element Models

-Classical Calculations

-Determination of Improvement.

71911

2923

..

.=

 

  

 ≥

OldLife

NewLife

Page 20: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 20/35

 FEA Evaluation of Effective Notch Stress:

SCF 

Tensile Load, Toe Bending Load, Toe.

Tensile Load, Root. Bending Load, Root.

K TENSION K BENDING

TOE 1.59 1.36

ROOT 2.45 -2.16

6 mm Sheet Metal Formed and Welded Hollow FrameModeled with Shell Elements

Applied Nominal Axial Load: 1 MPa

Weld at Break in Profile

******** END COMMENT BLOCK *********/

@INPUT{K1_1_Membrane

K1_2_MembraneK1_1_BendingK1_2_Bending

}

Str_Mem = (Sjj_1 + Sjj_2)/2Str_Bend = Sjj_1 - Str_Mem

Notch_Str_M1 = Str_Mem*K1_1_MembraneNotch_Str_M2 = Str_Mem*K1_2_Membrane

Notch_Str_B1 = Str_Bend*K1_1_BendingNotch_Str_B2 = Str_Bend*K1_2_Bending

Notch_Str_1 = Notch_Str_M1 + Notch_Str_B1Notch_Str_2 = Notch_Str_M2 + Notch_Str_B2

@IF(Notch_Str_1 >= Notch_Str_2){Notch_Str_Max = Notch_Str_1

}@ELSE{Notch_Str_Max = Notch_Str_2

}

@STORE{

Notch_Str_Max{description = "Worst Case Transverse Notch Stress, Sides 1 and 2"plotsummarize max unsigned

}

Notch_Str_1{description = "Transverse Notch Stress, Side 1"summarize max unsigned

}

Notch_Str_2{description = "Transverse Notch Stress, Side 2"summarize max unsigned

}

Notch_Str_M1{ "Transverse Notch Stress, Side 1, Membrane Load" }

Notch_Str_M2{ "Transverse Notch Stress, Side 2, Membrane Load" }

Notch_Str_B1{ "Transverse Notch Stress, Side 1, Bending Load" }

Notch_Str_B2{ "Transverse Notch Stress, Side 2, Bending Load" }

Str_Mem{ “Transverse Structural (Geometric) Membrane Stress" }

Str_Bend{ "Transverse Structural (Geometric) Bending Stress" }}

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 0.50 1.00 1.50 2.00

Notch_Str_Max, Worst Case Transverse Notch Stress, Sides 1 and 2

-2

-1

0

1

2

3

4

0.00 0.50 1.00 1.50 2.00

Notch_Str_1, Transverse Notch Stress, Side 1

Notch_Str_2, Transverse Notch Stress, Side 2

Page 21: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 21/35

 FEA Evaluation of Effective Notch Stress:Solid Elements

• Example with Radiused, Ground Special Quality Weld on Heavy

Weldment - Not too many degrees of freedom required here because

of the smooth geometry.

Page 22: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 22/35

 FEA Evaluation Solid Models

• Lack of Fusion Must Be Modeled. Done here in CAD.Would be a nice FEA Meshing Tool.

Page 23: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 23/35

 FEA Evaluation: Plane Strain Stress Intensity

Page 24: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 24/35

 FEA Tool Development Specific to Weld  Fatigue

• Production Analysis• Computations

• Automation and Data Management

• FEA Systems Interface

• Flexibility and User Input Ease

Page 25: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 25/35

 FEA Tools: Production Analysis

Page 26: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 26/35

 FEA Tools: FEWeld 

• Mathematics• Data Management

• Data Input

• Results Presentation

Page 27: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 27/35

 FEA Tools: FEWeld Shell Element Mechanics

Resolution of Weld Loads, Node 340:

t b.3

8in Base Material Thickness

σ t.19560 psi Normal Stress at Top of Joint

σ b.7884 psi Normal Stress at Bottom of Joint

τ zx_avg.390.2 psi Average Shear Stress in Joint

τ yz_av

.2530 psi .1210 psi

2

τ avg τ zx_avg2

τ yz_avg2

=τ avg 1910 psi

Joint Normal Load:

P .σ t σ b

2t b =P 5146

lbf 

in

Joint Bending Load:

M .σ t σ b

2

t b2

6=M 136.8

.inlbf 

in

Joint Shear Load:

V .τ avg t b =V 716.4lbf 

in

tb

σ

σt

b

Page 28: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 28/35

 FEA Tools: FEWeld Computations******** END COMMENT BLOCK *********/

@INPUT{K1_1_MembraneK1_2_MembraneK1_1_BendingK1_2_Bending

}

Str_Mem = (Sjj_1 + Sjj_2)/2

Str_Bend = Sjj_1 - Str_MemNotch_Str_M1 = Str_Mem*K1_1_MembraneNotch_Str_M2 = Str_Mem*K1_2_Membrane

Notch_Str_B1 = Str_Bend*K1_1_BendingNotch_Str_B2 = Str_Bend*K1_2_Bending

Notch_Str_1 = Notch_Str_M1 + Notch_Str_B1Notch_Str_2 = Notch_Str_M2 + Notch_Str_B2

@IF(Notch_Str_1 >= Notch_Str_2){Notch_Str_Max = Notch_Str_1

}@ELSE{Notch_Str_Max = Notch_Str_2

}@STORE{

Notch_Str_Max{description = "Worst Case Transverse Notch Stress, Sides 1 and 2"plotsummarize max unsigned

}

Notch_Str_1{description = "Transverse Notch Stress, Side 1"summarize max unsigned

}

Notch_Str_2{

description = "Transverse Notch Stress, Side 2"summarize max unsigned

}

Notch_Str_M1{ "Transverse Notch Stress, Side 1, Membrane Load" }

Notch_Str_M2{ "Transverse Notch Stress, Side 2, Membrane Load" }

Notch_Str_B1{ "Transverse Notch Stress, Side 1, Bending Load" }

Notch_Str_B2{ "Transverse Notch Stress, Side 2, Bending Load" }

Str_Mem{ “Transverse Structural (Geometric) Membrane Stress" }

Str_Bend{ "Transverse Structural (Geometric) Bending Stress" }}

Page 29: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 29/35

 FEA Tools: FEWeld Data Management 

Page 30: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 30/35

 FEA Tools: FEWeld Overview

Page 31: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 31/35

 FEA Tools: FEWeld FEA Interaction

FEWeld GUI Interaction with Cosmos

(Same for Ansys)

Page 32: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 32/35

Page 33: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 33/35

 FEA Tools: FEWeld Generalized Data Layout (Future)

Page 34: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 34/35

 FEA Tools: FEWeld Future Scripting 

MATERIAL E70_ELECTRODE{Fut 485 MPa

}

MATERIAL ASTM_A572GR50{Fut 485 MPaFy 345 MPa

}

LOAD_GROUP EXT_LOADS{ 01 02 03 04 }LOAD_GROUP FAT_LOADS{ 11 - 30 }LOAD_GROUP ALL{ EXTREME FATIGUE 05 - 09 }

WELD_TEMPLATE DOUBLE_SIDED_PREP{CALCULATION EXTREME_THROAT_SHEAR {

MATERIAL E70_ELECTRODEFORMULATION DPF-FVPARAMETERS{

E = 4 mmSa = Fut * .3

}LOADING{ EXT_LOADS }

}

CALCULATION FATIGUE_DAMAGE {

MATERIAL ASTM_A572GR50FORMULATION SoderbergPARAMETERS{

(mean, alt) = mean_alt( FATIGUE )C_Xverse 100 MPaDesign_Life 100e6

}}

}

WELD_SET CONFIG_00{DESCRIPTION "Original Configuration"FEA_MODEL_UNITS{ F=lb, L=in, T=s }WELD 01{

DESCRIPTION "Weld between parts 150Cand 148C"

ELEM COMPONENT BRACE_150CNODE LINE LIST{ 42 43 62 62 }

TEMPLATE DOUBLE_SIDED_PREP}WELD 02{

DESC "Weld between boom and yoke"ELEM AREA LIST{ 7 14 21 28 35 42 49

56 63 70 77 84 91 98 }

NODE LINE COMPONENT YOKE_JOINT

TEMPLATE DOUBLE_SIDED_PREP}

}

WELD_SET CONFIG_01{COPY SET CONFIG_00DESC "Modified Boom wall to 0.625"

}

Page 35: Mike Weaver

8/7/2019 Mike Weaver

http://slidepdf.com/reader/full/mike-weaver 35/35

Fatigue Estimation of Welds with FEA:Modeling, Criteria, Approaches, and Issues

THANK YOU

WEAVER E GINEERINGSeattle, Washington. http://www.weavereng.com

Presentation to SAE Fatigue Committee, Mike Weaver, October 2003, Cedar Rapids, Iowa