Top Banner
Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Massachusetts Institute of Technology Institute of Technology Unit 9. Architecture & Built Environment: materials for construction
23

Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

Mike Ashby, John Fernandez, Aileen GrayCambridge 2007

© MFA and DC 2007

MassachusettsMassachusettsInstitute of TechnologyInstitute of Technology

Unit 9. Architecture & Built Environment:

materials for construction

Page 2: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Outline

• Content and use of the database

Resources:

• “Material Architecture – emergent materials for innovative buildings and ecological construction” by John Fernandez, Architecture Press, Elsevier, Oxford, UK, 2006 ISBN 0-7506-6497-5.

• The CES Database for Architecture and the Built Environment, 2nd edition, by M.F. Ashby, J. Fernandez and A. Gray, Granta Design, Cambridge UK, 2007

• Why should architects be interested in materials?

• The CES database for Architecture and the Built Environment

Exercises

Page 3: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Why do architects need to know about materials?

Post-industrial revolution -ETFE (and thousands more)

Space Center, Leicester, UK.N. Grimshaw Architect

Pre-industrial revolution -Stone, wood, glass

York Minster, York, UK.

Page 4: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Today architects and structural engineers specify products, not materials

Gypsum and glass fiber composite board used as exterior sheathing.

Low-e laminated glass

Products, not materials?

Page 5: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Institute of Contemporary Art, Boston, MA. Diller + Scofidio, Architect.

Unfamiliar materials used in new products

Angle selective glass

Page 6: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Many materials used in these products are unfamiliar to designers.

Simmons Hall Student Dormitory, MIT, USA. Steven Holl, Architect.

Unfamiliar materials used in new products

Aluminum skin, covering….. Waterproof, adhesive-backed EPDM

Page 7: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Apartment Building, Munich, Germany. Thomas Herzog, Architect.

Unfamiliar materials used in new products

Silica aerogels allowing….. Translucent walls with high thermal resistance

Page 8: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Cathedral of Los Angeles, USA. Rafael Moneo Architect Stata Center, MIT, USA. F.O. Gehry Architect

Unfamiliar materials used in new products

High density concrete with stainless steel reinforcement

Stainless steel, zinc coated titanium, polymer sealants

Page 9: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

The 4 semi-autonomous systems

Functions

Transmit vertical loads to foundation horizontal loads Resist dynamic loading from wind, other high energy loads from earthquakes Provide long term service

Superstructure

Building services

Provide heat and cooling to interior spaces adequate ventilation artificial and natural light humidity control water and waste removal

Control transfer of air heat water; liquid, vapor radiation transfer Provide acoustic separation

Exterior envelope

Delineate interior space Provide distinct climate zones acoustically separate zones finished surfaces for health and safety of occupants

Interior systems

Page 10: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Materials

The 4 systems require diverse materials

Functions Steel reinforced concrete Cast iron and steel alloys Timber Brick, clay-based ceramics Stone

Transmit vertical loads to foundation horizontal loads Resist dynamic loading from wind, other high energy loads from earthquakes Provide long term service

Glass Aluminum Silicone, neoprene, epoxies Insulating fibers and foams Bitumen, fiberglass

Control transfer of air heat water; liquid, vapor radiation transfer Provide acoustic separation

Wood particle boards Polymer reinforced plaster Resins and other polymers Fabrics, natural fibers Tiles, terracotta, brick

Delineate interior space Provide distinct climate zones acoustically separate zones finished surfaces for health and safety of occupants

Galvanized sheet metals Adhesives and tapes Polymer electrical insulators Heat exchange materials Copper and PVC piping

Provide heat and cooling to interior spaces adequate ventilation artificial and natural light humidity control water and waste removal

Page 11: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

The CES database for Architecture

File Edit View Select Tools

Browse Select Search

MaterialUniverse

Concrete, Stone, Ceramic, Brick…..+

Wood, Plywood, Glulam, Bamboo, Straw…+

Metals, Ferrous and Non-ferrous+

Polymers: Elastomers, Thermoplastics…+

Composites+

Foams, Fabrics and Fibers+

Table: MaterialsUniverseTable: MaterialsUniverse

Subset: All ArchitectureSubset: All Architecture

Search

Find what:

Look in table: MaterialUniverse

Glulam

Page 12: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Architecture and the Built Environment

H y g r o - T h e r m a l p r o p e r t i e s W a t e r a b s o r p t i o n 2 - 8 . 5 % F r o s t R e s i s t a n c e P o o r E l e c t r i c a l p r o p e r t i e s E l e c t r i c a l c o n d u c t o r o r i n s u l a t o r ? G o o d i n s u l a t o r A c o u s t i c p r o p e r t i e s S o u n d a b s o r p t i o n P o o r S o u n d i s o l a t i o n G o o d E n v i r o n m e n t a l p r o p e r t i e s E m b o d i e d E n e r g y 4 . 9 - 5 . 4 M J / k g C a r b o n d i o x i d e f o o t p r i n t * 0 . 1 4 - 0 . 1 6 k g / k g R e c y c l e F a l s e D o w n c y c l e T r u e B i o d e g r a d e F a l s e I n c i n e r a t e F a l s e L a n d f i l l T r u e D u r a b i l i t y F r e s h W a t e r V e r y G o o d S a l t W a t e r V e r y G o o d W e a k A c i d G o o d S t r o n g A c i d P o o r W e a k A l k a l i s V e r y G o o d S t r o n g A l k a l i s G o o d O r g a n i c S o l v e n t s V e r y G o o d S u n l i g h t ( U V r a d i a t i o n ) V e r y G o o d D u r a b i l i t y i n i n d u s t r i a l a t m o s p h e r e G o o d D u r a b i l i t y i n r u r a l a t m o s p h e r e V e r y G o o d D u r a b i l i t y i n m a r i n e a t m o s p h e r e G o o d D e s i g n g u i d e l i n e s S a n d s t o n e i s e a s i l y c u t a n d c a r v e d . M a r b l e h a s a w o n d e r f u l t r a n s l u c e n c y , m a k i n g i t t h e c h o i c e o f m a n y s c u l p t o r s . I t w e a t h e r s i n a b e n i g n a t t r a c t i v e w a y , b u t t h e s u r f a c e t r a p s d i r t i n a n u r b a n o r i n d u s t r i a l e n v i r o n m e n t , r e q u i r i n g p e r i o d i c c l e a n i n g . T e c h n i c a l n o t e s S a n d s t o n e s c o n s i s t o f p a r t i c l e s o f q u a r t z , f e l d s p a r a n d m i c a b o n d e d b y a n a t u r a l c e m e n t . T h e c e m e n t d e t e r m i n e s t h e s t r e n g t h , d u r a b i l i t y a n d c o l o r . C a l c a r e o u s s a n d s t o n e s a r e b o n d e d w i t h c a l c i u m c a r b o n a t e ; t h e y a r e c a l l e d " f r e e s t o n e " b e c a u s e t h e y a r e e a s i l y w o r k e d b u t t h e y w e a t h e r b a d l y . S i l i c e o u s s a n d s t o n e s a r e b o n d e d w i t h a l u m i n o - s i l i c a t e s ; t h e y a r e a c i d r e s i s t a n t a n d d u r a b l e b u t h a r d e r t o w o r k . B l u e s t o n e , m u c h u s e d i n N e w Y o r k s t a t e , i s n o t e d f o r i t s e v e n g r a i n a n d h i g h s t r e n g t h . I t i s a b o u t 7 0 % s i l i c a b o n d e d w i t h c l a y . F e r r u g i n o u s s a n d s t o n e s c o n t a i n o x i d e s o f i r o n , g i v i n g l o v e l y b r o w n s , r e d s a n d y e l l o w s .

S a n d s t o n e S a n d s t o n e i s c o n s o l i d a t e d s a n d p a r t i c l e s ( q u a r t z ) , b o n d e d b y a c e m e n t i n g a g e n t : f e l d s p a r s , l i m e s , s i l i c a o r c l a y s . T h e s i z e o f t h e s a n d p a r t i c l e s , t h e p o r o s i t y a n d t h e s t r e n g t h v a r y g r e a t l y i n d i f f e r e n t s a n d s t o n e s . T h e c o l o u r s d e r i v e f o r m i r o n o r m a n g a n e s e i m p u r i t i e s a n d g i v e s a n d s t o n e s t h e i r c h a r a c t e r . P a r t i c u l a r g r a d e s a r e k n o w n a s B l u e s t o n e o r Y o r k s t o n e . S a n d s t o n e i s u s e d f o r b u i l d i n g s a n d f a c i n g , t a b l e t o p s , b e n c h t o p s a n d c h e m i c a l e q u i p m e n t t o r e s i s t a c i d s a n d a l k a l i s . G e n e r a l p r o p e r t i e s D e n s i t y 2 . 2 4 e 3 - 2 . 6 5 e 3 k g / m ^ 3 P r i c e * 0 . 2 - 0 . 3 $ U S / k g B u i l d i n g s y s t e m S u p e r s t r u c t u r e , E n c l o s u r e , I n t e r i o r , S e r v i c e s M e c h a n i c a l p r o p e r t i e s C o m p r e s s i v e S t r e n g t h 7 0 - 9 0 M P a T e n s i l e S t r e n g t h * 4 - 1 5 M P a B e n d i n g s t r e n g t h 5 - 1 6 M P a E l a s t i c L i m i t * 4 - 1 5 M P a F r a c t u r e T o u g h n e s s * 0 . 7 - 1 . 5 M P a . m ^ 1 / 2 Y o u n g ' s M o d u l u s 1 4 - 4 0 G P a S h e a r M o d u l u s * 1 4 . 9 - 1 5 . 7 G P a B u l k m o d u l u s * 2 4 . 9 - 2 6 . 2 G P a B e n d i n g m o d u l u s * 1 4 - 4 0 G P a P o i s s o n ' s R a t i o * 0 . 2 4 - 0 . 2 6 H a r d n e s s - V i c k e r s * 7 - 3 8 H V E l o n g a t i o n 0 % E n d u r a n c e L i m i t * 3 . 1 5 - 3 . 6 8 M P a M e c h a n i c a l l o s s c o e f f i c i e n t * 1 . 9 e - 3 - 5 . 7 e - 3 T h e r m a l a n d C o m b u s t i o n p r o p e r t i e s T h e r m a l c o n d u c t o r o r i n s u l a t o r ? P o o r i n s u l a t o r T h e r m a l R e s i s t i v i t y * 0 . 3 4 5 - 0 . 3 9 8 m . K / W T h e r m a l E x p a n s i o n * 7 . 5 - 8 . 5 µ s t r a i n / K S p e c i f i c H e a t * 8 4 0 - 9 2 0 J / k g . K M e l t i n g P o i n t * 1 . 4 7 e 3 - 1 . 6 7 e 3 K M a x i m u m S e r v i c e T e m p e r a t u r e * 6 7 3 - 9 7 3 K F l a m m a b i l i t y N o n - f l a m m a b l e

R e d S a n d s t o n e , U n i v e r s i t y o f S y d n e y , N e w S o u t h W a l e s , A u s t r a l i a

T h e r m a l a n d C o m b u s t i o n p r o p e r t i e s T h e r m a l c o n d u c t o r o r i n s u l a t o r ? P o o r i n s u l a t o r T h e r m a l R e s i s t i v i t y 0 . 3 4 5 - 0 . 3 9 8 m . C / W T h e r m a l E x p a n s i o n 7 . 5 - 8 . 5 µ s t r a i n / C S p e c i f i c H e a t * 8 4 0 - 9 2 0 J / k g . C M e l t i n g P o i n t * 1 2 0 0 - 1 4 0 0 C M a x i m u m S e r v i c e T e m p e r a t u r e * 4 0 0 - 7 0 0 C F l a m m a b i l i t y N o n - f l a m m a b l e

Part of a typical record (reformatted): Sandstone

Page 13: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

What is different?

Additional fields (62 selectable fields)

Mechanical properties in bending

Hygro-thermal props

Acoustic properties

Durability in various atmospheres

More classes of concrete

More classes of brick and tile

More fibers, particle and plywoods

More materials for insulation

Images relating to built environment where possible

Content: Level 2, expanded

126 records emphasising materials for the built environment

Page 14: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Enables students to explore relationships

Carry out elementary selections (“Find materials with large thermal resistivity”)

Ability to create property charts

Materials with high thermal resistivity

Results 5 out of 95 pass

Material 1 313

Material 2 300

Material 3 278

Material 4 247

etc...

Ranking T-resistivity

Page 15: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Selection: cladding for buildings

Select materials for cladding for buildings.

Durable, strong, ductile cladding in the form of sheet.

Environmentally friendly

As cheap as possible

Design requirements Translation

Function Protective cladding

Constraints

• Form: sheet

• Tensile strength > 50 MPa

• Elongation > 2%

• Durability in industrial environment: Very good

• Durability in rural environment: Very good

• Durability in marine environment: Very good

Free variable Choice of material

• Minimize cost (and / or)

• Minimize embodied energy

Objectives

Page 16: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Applying the constraints

Mechanical properties

Material form

Bulk

Sheet

Durability

MPa

%

-

Industrial environment

Tensile strength

Elongation

-

-etc

Rural environment

Marine environment

Apply constraints using a Limit stage

Very good

Very good

Very good

2

50

Page 17: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Cladding: the selection

Then a graph stage to minimize cost and embodied energy

Page 18: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Terne coated steel

Page 19: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Demo

Page 20: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Exercises: Searching the Architecture DB

9.1 Find, by Searching, the record for Glulam. What is it?

Answer: Glued-laminated timber.

9.2 Find, by Searching, the record for SMC. What is it?

Answer: SMC is Sheet molding compound, a polyester matrix glass-fiber composite

9.3 Find, by Searching, the record for RPC. What is it? Answer: RPC is Reactive powder concrete

Find what:

Look in table: MaterialUniverse

Browse Select Search

GlulamFind what:

Look in table: MaterialUniverse

Browse Select Search

Glulam

Page 21: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Exercises: Selecting from the Architecture DB

9.4 Find, using a Limit stage, materials that are

Good thermal insulators

Non-flammable

Have very good frost resistance

Results:

Glass fiber

Vermiculite

Browse Select Search

1. Selection data

MaterialsUniverse: All ArchitectureMaterialsUniverse: All Architecture

2. Selection Stages

Graph Limit Tree

Hygro-thermal properties

Thermal and combustions properties

Flammability

Good conductor

Poor conductor

Poor insulator

Good insulator

Frost resistance Very good

Conductor or insulator?

Non flammable

Browse Select SearchBrowse Select Search

1. Selection data

MaterialsUniverse: All ArchitectureMaterialsUniverse: All Architecture

2. Selection Stages

Graph Limit Tree

Hygro-thermal properties

Thermal and combustions properties

Flammability

Good conductor

Poor conductor

Poor insulator

Good insulator

Frost resistance Very good

Conductor or insulator?

Non flammable

Hygro-thermal properties

Thermal and combustions properties

Flammability

Good conductor

Poor conductor

Poor insulator

Good insulator

Good conductor

Poor conductor

Poor insulator

Good insulator

Frost resistance Very good

Conductor or insulator?

Non flammable

Page 22: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

Exercises: Selecting from the Architecture DB

9.5 Make a chart of Thermal resistivity plotted

against Embodied energy per unit volume*.

Hence find materials that are excellent insulators

and have very low embodied energy.

* Embodied energy / m3 = Embodied energy/kg x Density

Th

erm

al r

es

isti

vit

y (m

.K/W

)

Embodied energy x Density

Best choice

Browse Select Search

1. Selection data

MaterialsUniverse : All ArchitectureMaterialsUniverse : All Architecture

2. Selection Stages

Graph Limit Tree

Th

erm

al r

es

isti

vit

y (m

.K/W

)

Embodied energy x Density

choiceTh

erm

al r

es

isti

vit

y (m

.K/W

)

Embodied energy x DensityEmbodied energy x Density

Best choice

Browse Select SearchBrowse Select Search

1. Selection data

MaterialsUniverse : All ArchitectureMaterialsUniverse : All Architecture

2. Selection Stages

Graph Limit Tree

Page 23: Mike Ashby, John Fernandez, Aileen Gray Cambridge 2007 © MFA and DC 2007 Massachusetts Institute of Technology Unit 9. Architecture & Built Environment:

© MFA and DC 2007

End of Unit 9