Top Banner
Mid and Far Infrared Proper/es of a Complete Sample of Local AGNs 1 Kohei Ichikawa (Kyoto University) The Second AKARI Conference Feb 27I29, 2012 in Jeju, Korea Collaborators Yoshihiro Ueda (Kyoto Univ.), Yuichi Terashima (Ehime Univ.), Shinki Oyabu (Nagoya Univ.), Poshak Gandhi, Keiko Matsuta, and Takao Nakagawa (ISAS/JAXA) Ichikawa et al. 2012 submi7ed to ApJ
11

Mid$and$Far$Infrared$Proper/es$of$a$Complete$ …astro1.snu.ac.kr/AKARI-2/material/Day 2/Ichikawa.pdf · 2013. 4. 8. · Our radiative transfer code mcsim_mpi is based on the Monte

Feb 14, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Mid$and$Far$Infrared$Proper/es$of$a$Complete$Sample$of$Local$AGNs

    1

    Kohei$Ichikawa$(Kyoto$University)

    The$Second$AKARI$ConferenceFeb$27I29,$2012$in$Jeju,$Korea

    CollaboratorsYoshihiro$Ueda$(Kyoto$Univ.),$Yuichi$Terashima$(Ehime$Univ.),$Shinki$Oyabu$(Nagoya$Univ.),$Poshak$Gandhi,$Keiko$Matsuta,$

    and$Takao$Nakagawa$(ISAS/JAXA)

    Ichikawa/et/al./2012/submi7ed/to/ApJ

  • Ac/ve$Galac/c$Nuclei$(AGN)

  • The$AGN$unified$model

    AGNs in ULIRGs are buried

    AGNs obscured by torus-shaped dust

    Detectable via optical spectroscopy

    NLR

    Sy2Classical$AGN

    ⓒNASA

    Op/cal$SpectroscopyMainly$type$1$

    (+$small$number$of$type$2)

    AGN$has$various$kind$of$torus$size.

    NewIType$AGN

    ⓒISAS/JAXA

    XIray$SpectroscopyVery$small$torus$opening$angle,

    buried$AGN(NewIType$AGN:$NH~1024$cmI2)$

    Ueda+$’07,$Eguchi+$’09

    3

    faceIon(type$1)

    edgeIon(type$2)

  • Mo/va/on:AGN$torus$structureTorus$structure$itself$is$not$well$studied...

    We$can$observa/onally$constrain$the$torus$models$of$AGNs$with$various$kind$of$torus$size.

    LMIR(typeI2)

  • AGN$sampleOur$Goal$No.1:Making$new$AGN$sample$including$NewIType$AGN

    =We$need$NH$unbiased$surveysOur$Goal$No.2:To$constrain$the$torus$models$observa/onally

    Parent$Sample:Swij/BAT$Hard$XIray$(14$I195$keV)$catalog

    5

    Our$Sample:$Hard$XIray$&$Mid$Infrared$(MIR)$All$Sky$Survey$Catalog

    (Hard$XIray$(E>10$keV):$strong$penetra/on$up$to$NH$~$1024.5$cmI2$)

    MIR$catalog$I>$$AKARI$All$Sky$Survey$Catalog$(9,$18,$and$90$um)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$IRAS$Point/Faint$Source$Catalog$(12,$25$um)

    $$$$$$$WISE$preliminary$Catalog$(12,$22$um)

    Note:$AKARI,$IRAS,$WISE:$Difference$of$Central$Wavelength

  • Rela/ons$between$AKARI$and$WISE,$IRAS

    AKARI$9$um$v.s.$IRAS$12$um,$WISE$12$um

    AKARI$18$um$v.s.$IRAS$25$um,$WISE$22$umWe$checked$luminosity$rela/ons

    10 Ichikawa et al.

    0

    5

    10

    15

    20

    25

    30

    0 0.05 0.1 0.15 0.2

    Num

    ber o

    f sou

    rces

    Distance[arcmin]

    IRCFIS

    Fig. 1.— The histograms of position difference between the optical counterparts of the Swift/BAT AGNs and their AKARI counterparts(red: IRC, blue: FIS).

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 1

    2µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 2

    5µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    12µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    25µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    Fig. 2.— The plot of infrared luminosities between AKARI and IRAS (top panels). Each panel shows luminosity relation betweenAKARI 9 µm v.s. IRAS 12 µm (Left: 48 sample) , AKARI 18 µm v.s. IRAS 25 µm (Right: 51 sample) respectively. Bottom panels showthe infrared luminosities between AKARI and WISE, AKARI 9 µm v.s. WISE 12 µm (Left: 31 sample) and AKARI 18 µm v.s. WISE 22µm (Right 32 sample) .

    10 Ichikawa et al.

    0

    5

    10

    15

    20

    25

    30

    0 0.05 0.1 0.15 0.2

    Num

    ber o

    f sou

    rces

    Distance[arcmin]

    IRCFIS

    Fig. 1.— The histograms of position difference between the optical counterparts of the Swift/BAT AGNs and their AKARI counterparts(red: IRC, blue: FIS).

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 1

    2µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 2

    5µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    12µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5lo

    g!L !

    (WIS

    E 25

    µm) [

    erg

    s-1 ]

    log!L!(AKARI 18µm) [erg s-1]

    Fig. 2.— The plot of infrared luminosities between AKARI and IRAS (top panels). Each panel shows luminosity relation betweenAKARI 9 µm v.s. IRAS 12 µm (Left: 48 sample) , AKARI 18 µm v.s. IRAS 25 µm (Right: 51 sample) respectively. Bottom panels showthe infrared luminosities between AKARI and WISE, AKARI 9 µm v.s. WISE 12 µm (Left: 31 sample) and AKARI 18 µm v.s. WISE 22µm (Right 32 sample) .

    AKARI$18um AKARI$18um

    IRAS$25um

    AKARI$18um$v.s.$IRAS$25um AKARI$18um$v.s.$WISE$22$um

    WISE$22um

    AKARIとWISE,)IRASの相関AKARI)9)um)v.s.)IRAS)12)um,)WISE)12)um

    AKARI)18)um)v.s.)IRAS)25)um,)WISE)22)umバンド間のずれは?

    10 Ichikawa et al.

    0

    5

    10

    15

    20

    25

    30

    0 0.05 0.1 0.15 0.2

    Num

    ber o

    f sou

    rces

    Distance[arcmin]

    IRCFIS

    Fig. 1.— The histograms of position difference between the optical counterparts of the Swift/BAT AGNs and their AKARI counterparts(red: IRC, blue: FIS).

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 1

    2µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 2

    5µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    12µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    25µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    Fig. 2.— The plot of infrared luminosities between AKARI and IRAS (top panels). Each panel shows luminosity relation betweenAKARI 9 µm v.s. IRAS 12 µm (Left: 48 sample) , AKARI 18 µm v.s. IRAS 25 µm (Right: 51 sample) respectively. Bottom panels showthe infrared luminosities between AKARI and WISE, AKARI 9 µm v.s. WISE 12 µm (Left: 31 sample) and AKARI 18 µm v.s. WISE 22µm (Right 32 sample) .

    10 Ichikawa et al.

    0

    5

    10

    15

    20

    25

    30

    0 0.05 0.1 0.15 0.2

    Num

    ber o

    f sou

    rces

    Distance[arcmin]

    IRCFIS

    Fig. 1.— The histograms of position difference between the optical counterparts of the Swift/BAT AGNs and their AKARI counterparts(red: IRC, blue: FIS).

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 1

    2µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 2

    5µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    12µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5lo

    g!L !

    (WIS

    E 25

    µm) [

    erg

    s-1 ]

    log!L!(AKARI 18µm) [erg s-1]

    Fig. 2.— The plot of infrared luminosities between AKARI and IRAS (top panels). Each panel shows luminosity relation betweenAKARI 9 µm v.s. IRAS 12 µm (Left: 48 sample) , AKARI 18 µm v.s. IRAS 25 µm (Right: 51 sample) respectively. Bottom panels showthe infrared luminosities between AKARI and WISE, AKARI 9 µm v.s. WISE 12 µm (Left: 31 sample) and AKARI 18 µm v.s. WISE 22µm (Right 32 sample) .

    AKARI)18um AKARI)18um

    IRAS)25um

    AKARI)18um)v.s.)IRAS)25um AKARI)18um)v.s.)WISE)22)um

    WISE)22um

  • 113$are$selected$from$137$sources$(~82%$completeness)(type$1:$47,$type$2:$52,$New$type:$14)

    AKARIとWISE,)IRASの相関AKARI)9)um)v.s.)IRAS)12)um,)WISE)12)um

    AKARI)18)um)v.s.)IRAS)25)um,)WISE)22)umバンド間のずれは?

    10 Ichikawa et al.

    0

    5

    10

    15

    20

    25

    30

    0 0.05 0.1 0.15 0.2

    Num

    ber o

    f sou

    rces

    Distance[arcmin]

    IRCFIS

    Fig. 1.— The histograms of position difference between the optical counterparts of the Swift/BAT AGNs and their AKARI counterparts(red: IRC, blue: FIS).

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 1

    2µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 2

    5µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    12µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    25µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    Fig. 2.— The plot of infrared luminosities between AKARI and IRAS (top panels). Each panel shows luminosity relation betweenAKARI 9 µm v.s. IRAS 12 µm (Left: 48 sample) , AKARI 18 µm v.s. IRAS 25 µm (Right: 51 sample) respectively. Bottom panels showthe infrared luminosities between AKARI and WISE, AKARI 9 µm v.s. WISE 12 µm (Left: 31 sample) and AKARI 18 µm v.s. WISE 22µm (Right 32 sample) .

    10 Ichikawa et al.

    0

    5

    10

    15

    20

    25

    30

    0 0.05 0.1 0.15 0.2

    Num

    ber o

    f sou

    rces

    Distance[arcmin]

    IRCFIS

    Fig. 1.— The histograms of position difference between the optical counterparts of the Swift/BAT AGNs and their AKARI counterparts(red: IRC, blue: FIS).

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 1

    2µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(IR

    AS 2

    5µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    12µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 9µm) [erg s-1]

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    42 42.5 43 43.5 44 44.5 45 45.5

    log!

    L !(W

    ISE

    25µm

    ) [er

    g s-

    1 ]

    log!L!(AKARI 18µm) [erg s-1]

    Fig. 2.— The plot of infrared luminosities between AKARI and IRAS (top panels). Each panel shows luminosity relation betweenAKARI 9 µm v.s. IRAS 12 µm (Left: 48 sample) , AKARI 18 µm v.s. IRAS 25 µm (Right: 51 sample) respectively. Bottom panels showthe infrared luminosities between AKARI and WISE, AKARI 9 µm v.s. WISE 12 µm (Left: 31 sample) and AKARI 18 µm v.s. WISE 22µm (Right 32 sample) .

    AKARI)18um AKARI)18um

    IRAS)25um

    AKARI)18um)v.s.)IRAS)25um AKARI)18um)v.s.)WISE)22)um

    WISE)22um

    Rela/ons$between$AKARI$and$WISE,$IRASInfrared Properties of Local AGNs 3

    FIS sources, respectively, which correspond to typical 3σpositional errors at faintest fluxes (Ishihara et al. (2010);Yamamura et al. (2010)). We find 71, 80, and 63 AKARIcounterparts in the 9 µm, 18µm, and 90 µm bands outof the total 137 non-blazar BAT AGN sample. Figure 2shows the distribution of the angular separation betweenAKARI and optical positions for the Swift/BAT AGNswith IRC counterparts (red) and those with FIS counter-parts (blue). The IRC sources are more concentrated ina small distance range (with an average of 〈∆r〉 = 0.02′)than the FIS sources (〈∆r〉 = 0.08′), as expected fromthe positional accuracy in these catalogs.Further, for AGNs whose MIR fluxes are not reliably

    measured (FQUAL < 3) or not detected with AKARI(66 and 57 sources in the 9 µm and 18 µm), we search fortheir counterparts at 12 µm or 25 µm in the IRAS-FSCand IRAS-PSC. Here we adopt the 50 arcsec radius, cor-responding to the

  • Results

    8

  • LIR(9,$18$um)$∝L(14I195keV)

    All$type(TypeI1,$TypeI2,$NewIType)follow$same$correla/ons

    $$$$$$$$At$the$same$Lx$,LMIR(typeI2)$~$LMIR(typeI1)

    midIIR/XIray$luminosity$rela/on

    41.5

    42

    42.5

    43

    43.5

    44

    44.5

    45

    45.5

    41.5 42 42.5 43 43.5 44 44.5 45 45.5

    log

    L(14

    -195

    keV)

    [erg

    s-1

    ]log L (18!m) [erg s-1]

    1041

    1042

    1043

    1044

    1045

    1046

    1041 1042 1043 1044 1045 1046

    L(1

    4-19

    5keV

    )[erg

    s-1

    ]

    L (90µm) [erg s-1]

    New-TypeType-2Type-1

    NewITypeTypeI2TypeI1

    Our$results$supportClumpy$dust$torus$model

    9

    ○□◇! :!WISE●■◆(small):!AKARI●■◆(Large):!IRAS

  • Infrared$average$SEDHao+$(2007)

    The$excess$comes$from$7.7$um$PAH$emission?$

    NewIType$AGN$host$galaxies$have$

    ac/ve$starburst?

    0.1

    1

    10

    1 10 100

    Nor

    mal

    ized

    Lum

    inos

    ity

    Wavelength[µm]

    9um$excess?

    1041

    1042

    1043

    1044

    1045

    1046

    1041 1042 1043 1044 1045 1046

    L(1

    4-19

    5keV

    )[erg

    s-1

    ]

    L (90µm) [erg s-1]

    New-TypeType-2Type-1

    NewIType

    TypeI2

    TypeI1

    NewIType$AGN$9um$excess$sign

    10

  • Summary

    All$type$(TypeI1,$TypeI2,$NewIType)$follow$the$same$correla/ons

    Our$results$does$not$support$smooth$dust$model

    but$clumpy$dust$torus$model.

    11

    MidIIR$luminosity$is$a$good$tracer$of$AGN$ac/vity.

    LMIR(9,$18$um)$∝L(14I195keV)

    NewIType$9$um$excessIf$we$believe$this$excess$comes$from$7.7$um$PAH$emission,NewIType$AGN$host$galaxies$have$strong$starburst?

    Future$workInves/ga/ng$the$origin$of$the$9$um$excess$sign$by$spectroscopy