Top Banner
Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research and Development Joel Ullom University of Colorado, Boulder Dan Vega, Federal POC Mike Miller, Technical POC Project No. 13-4835
17

Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

May 30, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

Microwave Readout Techniques for Very Large Arrays of Nuclear

Sensors

Fuel Cycle Research and Development Joel  Ullom  

University  of  Colorado,  Boulder    

Dan  Vega,  Federal  POC  Mike  Miller,  Technical  POC  

Project No. 13-4835

Page 2: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

1

FinalReportforDE-NE0000716001Recipient: UniversityofColorado,Boulder Boulder,CO80303ProposalTitle:MicrowavereadouttechniquesforverylargearraysofnuclearsensorsPI:JoelUllom,Lecturer,DepartmentofPhysics,[email protected],303-497-4408SubmittingOfficial:JoelUllom(seeabove)ProjectPeriod:Jan1,2014–Dec31,2016ReportSubmissionDate:May11,2017

ExecutiveSummaryDuringthisproject,wetransformedtheuseofmicrowavereadouttechniquesfornuclearsensorsfromaspeculativeideatoreality.Thecoreoftheprojectconsistedofthedevelopmentofasetofmicrowaveelectronicsabletogenerateandprocesslargenumbersofmicrowavetones.Thetonescanbeusedtoprobeacircuitcontainingaseriesofelectricalresonanceswhosefrequencylocationsandwidthsdependonthestateofanetworkofsensors,withonesensorperresonance.Theamplitudeandphaseofthetonesemergingfromthecircuitareprocessedbythesameelectronicsandarereducedtothesensorsignalsaftertwodemodulationsteps.Thisapproachallowsalargenumberofsensorstobeinterrogatedusingasinglepairofcoaxialcables.Wesuccessfullydevelopedhardware,firmware,andsoftwaretocompleteascalableimplementationofthesemicrowavecontrolelectronicsanddemonstratedtheiruseintwoareas.First,weshowedthattheelectronicscanbeusedatroomtemperaturetoreadoutanetworkofdiversesensortypesrelevanttosafeguardsorprocessmonitoring.Second,weshowedthattheelectronicscanbeusedtomeasurelargenumbersofultrasensitivecryogenicsensorssuchasgamma-raymicrocalorimeters.Inparticular,wedemonstratedtheundegradedreadoutofupto128channelsandestablishedapathtoevenhighermultiplexingfactors.Theseresultshavetransformedtheprospectsforgamma-rayspectrometersbasedoncryogenicmicrocalorimeterarraysbyenablingspectrometerswhosecollectingareasandcountratescanbecompetitivewithhighpuritygermaniumbutwith10xbetterspectralresolution.TechnicalResults–MicrowaveElectronics128ChannelMicrowaveElectronicsAphotographoftheelectronicshardwaredevelopedforthisprojectisshowninFig.1.TonegenerationandprocessingareperformedusingaVirtex6FieldProgrammableGateArray(FPGA)chip.Thischipispartoftheso-calledROACH2electronicsdevelopedbytheCASPERradioastronomyconsortiumandadaptedtothisproject.InadditiontopackagingtheROACH2anditsassociatedanalog-to-digital/digital-to-analog(ADC/DAC)daughtercardinaneasy-to-use,low-noiseenclosure,wedevelopedcustomintermediatefrequency(IF)circuitrytomixtonesgeneratedatbasebanduptoGHzfrequenciesandthenmixthembackdownagainafterprobingthesensors.

Page 3: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

2

Figure1.TheROACH2(atback)initsnewcasewiththeADC/DAC(middle)andIF(front)circuitryinsidethecase,improvedcoolingfans,frontpanelSMAconnections,andalowernoisepowersupply.ThepicturedIFcircuitrywaslaterreplacedwithbetterperformingcustomIFcircuits.WealsodevelopedfirmwarefortheROACH2electronicsthatcangenerateandprocessmicrowavesignalsfromupto128sensorchannelsperROACH2board.Thefirmwareusesapolyphasefilterbanktoefficientlychannelizedifferentfrequencybandsafterdigitization.ThearchitectureofthefinalfirmwareimplementationisshowninFig.2below.

Figure2.Firmwarearchitectureformicrowavetonegenerationandprocessing.Numbersinbluearethebitdepthforeachexchangeofinformation.The128channelfirmwaredevelopedfortheROACH2occupiesonlyabout8%ofthehardwareresourcesonthecentralFPGAchip.Hence,thereisabundantdigitalcapacitytomovetohighersensorcounts.ThevectornetworkanalyzertraceinFigure3showsthesuccessfulgenerationof128microwavetonesthatcanbeusedtoprobe128sensorchannels.

MKIDADC/DACZ-DOK+

ROACH2: Xilinx Virtex-6 FPGA

DAC

DAC

ADC

256 MHz

12

ADC

12

12

12

12

512 MHz

Q12

I

DATA processor

10 GbE

ADCRAW

32

ChannelIQ

phase phaseoffset

Discrete IF

(simplified)

3He ADR

HEMT +47 dB

40

44

44

ATAN1flux

rampmix

accum

ATAN2flux ramp

DDSIQ center

16 40

16

LO

16

16

32

32

DDRIO

ADC CO-ADD

DAC QDR

Channel FIR

100-tap

Channel Mix QDR

Channel Complex

Mix

128 Channel

Bin Selection

512 Point FFT

14

14

14

4-Tap Polyphase Filter Bank

32

48

FFT

36

36

38

14

32

44

DDRIO

16

Page 4: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

3

Figure3.128microwavetonescenteredon5.5GHzproducedbytheROACH2electronics.Themicrowavetonesaretransmittedonasinglesharedcoaxialcableandusedtoprobe128sensorchannels.Thefunctionalityprovidedbythehardwareandfirmwaredevelopedforthisprojectincludes:

• GenerationandsummationoftonesinMHzregime• Up-mixingofsummedtonesto~6GHzregime• Deliveryofsummedtonestoresonatorsthatcanbecoupledtosensors.• Lownoisemeasurementofsummedtonesemergingfrommicrowaveresonators• Down-mixingofsummedtonesfromGHztoMHzregime• DigitizationofsummedanalogMHztones• Channelizationoftones,meaningseparationintofrequencybandsthatisolate

eachcarrierfrequencyalongwithanysignalembeddedasperturbationstothecarrier

• Extractionofsensorsignalsfromthechannelizedtonesusingfluxrampdemodulation.

AllthisfunctionalityisperformedinrealtimethankstotheprocessingpoweroftheVirtex6FPGAchip.Presently,the128tonesmustresidewithina500MHzbandduetothelimitsoftheROACH2ADC/DAChardware,butmoremodernADC/DAChardwarewillovercomethislimit.Inadditiontohardwareandfirmwaredevelopment,wealsowrotesoftwaretocommandtheROACH2electronicsandtomakesenseofanddisplaytheinformationreturnedfromit.Oneexampletaskperformedbythesoftwareistodeterminethefrequenciesforthe

Page 5: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

4

microwavetonesgeneratedbytheROACH2;thecorrectfrequenciescorrespondtotheresonancefrequenciesofthethin-filmresonatorsonthemultiplexerchipsinthecryostat.AscreenshotfromthesoftwarecontrolenvironmentisshowninFigure4.

Figure4.Screenshotofsoftwarecontrolenvironmentformicrowavereadoutexperiments.Theplotsatbottomarevisualizationsoftherealandimaginarypartsofthemicrowavetransmissionthroughthesharedfeedlineformanysensorchannels.Thesesignalschangeinresponsetothestateofthesensors.TechnicalResults–ConventionalSensorNetworksAnimportantgoalofthisprojectwastoshowthatmicrowavereadoutcanbeusedatroomtemperaturetomonitornetworksofdiversesensortypes.Theuseofmicrowavereadouttomonitorasensornetworkhasseveralattractions.Networkcomplexityistransferredfromthesensorstothecentralcontrolelectronicswhichcouldbeadvantageousinnuclearfacilitieswhereaccesstosensorsaftertheirinstallationmaybeverylimited.Allsignalsarecarriedonasingle,simplecoaxialcablesocomplexandexpensiverewiringofanuclearfacilityisnotneededintheeventofachangetothesensornetwork.Further,allsensorsaremonitoredcontinuouslyusinganalogsignalsthathaveaclearconnectiontothephysicalstateofthesensors.Suchanarchitecturemaybemorerobusttotamperingthanconventionaldigitalnetworking.

Page 6: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

5

Figure5.(Topleft)Printedcircuitboard(PCB)containingmicrowavefeedlineandmicrowaveresonators(labeledf1,f2,andf3).Voltagesignalsfromeachelementofasensornetworkconnecttothemicrowaveresonators.Eachvoltagesignalisconnectedtoavoltage-controlledcapacitororvaractor.TheformfactorofthePCBisnotrepresentativeofhowasensornetworkforsafeguardswouldbeconnected;itwaschosentobeconvenientforlaboratorytesting.(Topright)Commercialresistancebridgefortemperaturemeasurementusedinthemodelsensornetwork.(Bottomleft)Commercialpressuresensorusedinthenetwork.(Bottomright)Commercialvoltagesupplywhoseoutputwasmonitoredusingmicrowavereadout.Ourkeyresultinthistechnicalareawasdemonstratingtheuseofmicrowavereadouttomonitorthestateofasmallnetworkcontainingthreeverydifferentpiecesofelectronics.Thesewere(1)acommercialresistancebridge,(2)acommercialpressuresensor,and(3)acommercialvoltagesource(seeFig.5).Inallthreecases,thestateoftheinstrumentisindicatedbyavoltageoutputwhichistransducedtoacapacitancebymeansofaninexpensive,commercialvaractor.Thevaractorsareeachembeddedinroomtemperaturemicrowaveresonancecircuitsassembledfrominductorsandcapacitors.Eachresonancecircuithasauniqueidentifyingfrequencyandthethreeresonancecircuitsaremonitored

f1

f2 f3

to thermometer

to power supply

to pressure sesnor

ground connecitons

feed line

Page 7: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

6

continuouslyusingmicrowavetonesfromtheROACH2electronicsdevelopedforthisproject.

Figure6.Electricalcircuitforonemicrowaveresonator.TheinputsignalofinterestisV1.Thevaractor(D1)isshownasacompositediodeandcapacitor.ThecapacitorC3isusedtokeepthechangeofresonancefrequencyduetochangingV1towithinahalfbandwidthoftheresonance.R1isusedforisolationofthesignalvoltageV1.C1stopsthecurrentbiasingthediodefrombeingshortedtoground.C2mostlycontrolstheinputcouplingoftheresonancecircuitandlimitsthechangeinqualityfactor.L1helpstocreateacircuitresonanceatthetargetfrequencyandfrequencywidth.AdetailedelectricalcircuitforonemicrowaveresonatorisshowninFigure6.Thiscircuitisreplicatedforeachsensorinthenetworkbutwithslightlydifferentcircuitvaluessothattheresonancefrequenciesarenonoverlapping.AlltheresonatorsareconnectedtoasinglemicrowavefeedlinethatisconnectedtotheROACH2electronics.Microwavetonesareinjectedatoneendofthefeedlineandmonitoredattheother.Forthepresentdemonstration,thefeedlinewasatraceonaPCBbutinanactualsafeguardsscenariothefeedlinewouldbeacoaxialcableorcables.

D1

2-12pF

C1

C2

L1R1

TL1 TL2

V1

Port2Port1GND

Network

Analyzer

Ch1 Ch2

Ch3 Ch4

Mea-

s ureFormat

S cale/

Ref

Dis play Avg Cal

MarkerMarker

S earch

Marker

Func

S tart S top Power

Center S pan S weep

Return

S ys tem Local Pres et

VideoS ave/

RecallS eq

S timulus Ins trumentS tateRChannel

LineOn/Off

8 9

4 5 6

1 2 3

GHz

MHz

kHz

Hz0 key'trans lation:.(en)'returneda objectins teadofs tring.-

> <

<Entry

Off

C3

Page 8: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

7

Figure7.(Left)Measuredmicrowavetransmissionthroughfeedlinevsfrequency.Thestateofthethreesensorsaffectstransmissionneartheiridentifyingresonancefrequencies.Thetwocurves(blue,green)showcircuitbehaviorforminimumandmaximumvaluesofvoltageappliedtothevaractors.(Right)Successfulmeasurementofgaspressureperformedusingmicrowavetechniques(blue)comparedtoconventionaltechniques(green).Theamplitudediscrepanciesareduetoanoverlysimplecalibrationschemeforthemicrowavereadout.

MeasuredresultsforthesensornetworkofFig.5areshowninFig.7above.Atleftaremeasurementsofmicrowavetransmissionthroughthefeedlineasafunctionoffrequency.Frequenciesashighas8GHzareaccessiblebut200MHzisthehighestvalueshown.Threemicrowaveresonancesarevisible,oneforeachsensor.Thetwocurves(blue,green),showthemicrowaveresponseofthecircuitwhenminimum(0V)andmaximum(10V)signalsareappliedtothethreevaractors.Theresonancesshiftinfrequency,whichchangesmicrowavesignalstransmittedthroughthefeedline.Thefrequencylocationsandwidthsoftheresonancescanbefurtheroptimizedinthefuture.Atrightisameasurementofgaspressurevstime.Thetwocurvesshowmeasurementsperformedusingmicrowavetechniques(blue)andconventionaltechniques(green).Thereisexcellentqualitativeagreementbetweenthemeasurementsandmediocrequantitativeagreement.Thequantitativediscrepanciesarisebecausethemicrowavetechniqueassumesasimplelinearcorrelationbetweenpressureandtransmittedmicrowavepower;implementationofanonlinearcalibrationcurveisstraightforwardforthefuture.Similarcomparisonshavebeensuccessfullyperformedfortheresistancebridgeandthemonitoroutputofthevoltagesupply.

Thedemonstrationaboveusedvaractordiodestotransducesensorvoltagestocapacitancechangesinresonatorcircuits.However,ourtechniqueisconsiderablymoregeneralthanjusttheuseofvaractors.Anyphysicalchangethatcanbetransducedtoachangeincapacitance,inductance,orresistancecanbemeasured.Forexample,physicaldisplacementsstraightforwardlygiverisetocapacitancechangesandthereforecanbemeasuredusingthesametechnique.Also,thethreesensorsmeasuredabovewerefarfrom

connected to pressure sensor

connected to thermometer

connected to power supply

Page 9: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

8

exhaustingthe500MHzofbandwidthavailableperROACH2unitsomuchlargernetworksofsensorsarepossible.ThisworkcompletedaM3milestonescheduledfor9/30/2016andfulfillsoneofthebroadvisionsoutlinedintheoriginalproposal.TechnicalResults–OperationofMicrocalorimeterSensorsAsecondkeygoalforthisprojectwastousemicrowavereadouttomeasuresignalsfromanarrayofgamma-raymicrocalorimetersensors.Toreview,thesecryogenicsensorsprovideresolvingpowers5-10xbetterthanhighpuritygermaniumbutthesmallsizeandslowresponseofindividualdevicesnecessitatestheuseofsensorarraysinpracticalapplications.Thelargestarrayachievedbeforethisworkwas256sensorsmeasuredusing8amplifierchannels,sothateachamplifierwasmeasuringthemultiplexedsignalsfrom32sensors.Thismultiplexingwasperformedinthetimedomainandthebandwidthavailableperamplifierwasonly5-10MHz(D.Bennettetal,ReviewofScientificInstruments,2012).Inwhatfollows,weshowthattheseearlierresultshavebeendecisivelysurpassedusingmicrowavereadout.Toreadoutmicrocalorimetersensors,thecurrentpulsesfromthesedevicesaretransducedtoaninductancechangeusingaspecializedthin-filmcircuitcalledaRF-SQUID.EachRF-SQUIDisembeddedinathin-filmresonatorthatcouplestoasharedmicrowavefeedline.WedesignedandfabricatedthesecircuitsasshowninFig.8.Animportantresultwasreducingthecurrentnoiseofthesecircuitsbyafactorcloseto4comparedtoourproof-of-principledemonstrationbeforethisNEUPproject.Wesuccessfullyreducedthecurrentnoisetoabout20pA/rt(Hz)whichislowenoughtohavenegligibleimpactontheresolutionofmostmicrocalorimetersensors.

Figure8.(left)Photographof33channelRF-SQUIDcircuitwithpennyforscale.Thesharedfeedlinerunsthelengthofthechip.Thethin-filmresonatorscanbeseenasfainttrombone-shapedstructuresspanningthewidthofthechip.(right)MeasurednoisespectraldensityfromnewRF-SQUIDamplifiers.Thenoiseismeasuredafterfluxrampdemodulationandisthereforerepresentativeofthenoisethatwillbeencounteredbysensorscoupledtotheamplifierchips.

Page 10: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

9

WithRF-SQUIDcircuitsandthemicrowaveelectronicsinhand,weassembledthemeasurementcircuitshowninFig.9.

Figure9.Systemdiagram.Thegamma-raymicrocalorimetersusetheresistivetransitionofasuperconductingfilmtotransducedepositedphotonenergyintoachangeinelectricalcurrentandarethereforeknownasTransitionEdgeSensors(TESs).Themultiplexerchipcontainsthesharedmicrowavefeedline,microwaveresonators,andRF-SQUIDswhichtransduceTEScurrenttoachangeinresonatorfrequency.ThewarmelectronicsfunctionalityisprovidedbythehardwareofFig.1andthefirmwareofFig.2.Wealsoassembledadetectorpackagecontaininggamma-raymicrocalorimeters,RF-SQUIDs,andpassiveresistorsandinductors.AphotographoftheassembleddetectorpackageisshowninFigure10.MicrowavesignalsenterandleavetheboxonjustfourSMAconnectorsatthetopandbottomwallsofthepackage.Thepackageisintendedtohave256microcalorimetersensorsalthoughitcanbeseeninthefigurethatsomearemissingtheirSngamma-rayabsorbers.ThisdetectorpackageandthemeasurementsetupofFigure9arecalledSpectrometertoLeverageExtensiveDevelopmentofGamma-rayTESsforHugeArraysusingMicrowaveMultiplexedEnabledReadout,orSLEDGEHAMMER.

Page 11: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

10

Figure10.CompleteSLEDGEHAMMERdetectorpackagewithmicrocalorimetersensorsatcenter.SmallersiliconchipsatsidescontaintheRF-SQUIDs,biasresistors,Nyquistinductors,andancillarywiring.RedarrowsindicatethetwomicrowavefeedlinesthatarecoupledtotheresonatorsandRF-SQUIDs.Eachfeedlineiscoupledto128resonatorsandRF-SQUIDs.AnimportantcharacterizationmeasurementisshowninFigure11below.Thefigureshowsthemicrowavetransmissionthroughfoursiliconchipscontainingatotalof128RF-SQUIDsandthin-filmresonators.ThefullSLEDGEHAMMERdetectorpackagecontainseightsiliconchipswithatotalof256RF-SQUIDs.

Figure11.Microwavetransmissionthroughsharedfeedlinewith128coupledmicrowaveresonatorsandRF-SQUIDs.ThemicrowavetonesofFig.3aretunedtotheresonancesinordertoprobethestateofthesensorswhosecurrentismodulatingtheinductanceoftheRF-SQUIDs.

Page 12: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

11

WesuccessfullycooledandoperatedtheSLEDGEHAMMERinstrumentusingourmicrowavereadoutelectronics.Acrucialmetricformicrowavereadoutisthatthenoisefromthetechniquebemuchsmallerthantheintrinsicnoiseofthesensorsunderstudy.Whenthisconditionismet,energyresolutionduringgamma-rayspectroscopywillbesetbythesensors,andnotthereadout.Wemeasuredthereadoutnoiseinallofthe256sensorchannelsofthefirstSLEDGEHAMMERdetectorpackage.Thenoisedatawasacquiredintwoseparatemeasurementsof128channelsbutsimilardatawillbeacquiredsimultaneouslyinthefuture.HistogramsoftheaveragereadoutnoiseinthefourquadrantsofthedetectorpackageareshowninFigure12.Whilethisfigureisratherundramatic,ittellsacrucialstory:thatmicrowavetechniquesareenablingtheundegradedreadoutofmoresensorchannelsperamplifier(128)thaneverbefore.

Figure12.Histogramsofaveragereadoutnoisein256sensorchannelsdividedintofourquadrants.Typicalvaluesofsensornoisefromagamma-raymicrocalorimeterare100pA/Hz1/2,substantiallylargerthanthevaluesinthefigure(intheseunits,noisetermsaddinquadrature).TheaveragenoiseinquadrantAB-34ishigherthantheotherquadrants.ThisisduetolessmicrowavepowerreachingthesharedHEMTamplifierfromtheRF-SQUIDsinthisquadrant.ThenoisevaluesinFigure12aremostlycenteredaround40pA/Hz1/2.Insubsequentwork,wedeterminedthatinsufficientmicrowavepowerwasreachingalltheresonators.Afterremedyingthisproblem,weobtainednoisehistogramscenteredaround20pA/Hz1/2,consistentwithourexpectationsbasedonearlyresultssuchasFig.8.Whilethisadditionalnoisemarginisn’tneededforgamma-raysensors,itisdesirableforothersensortypes.Havingdemonstratedfullfunctionalityofthereadoutsystem,weproceededtoacquiregamma-rayspectrafroma153GdradioisotopesourceusingthefirstSLEDGEHAMMERdetectorpackage.Thepackagecontains256gamma-raymicrocalorimeterson8separatesiliconchipssuppliedbyourcollaboratorsattheNISTBoulderLaboratories.Unfortunately,morethanhalfofthesensorscontaineddefects.Intotal,only89sensorsweresufficientlydefect-freetobeusefulforhighperformancespectroscopy.Figure13

Page 13: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

12

showsoutputdatastreamsfromabout50highqualitymicrocalorimetersensors.Thetracesillustrateboththetimeconstantandsignal-to-noiseratioofthesensors.

Figure13.Outputdatastreamsfrom53microcalorimetersensorsunderilluminationfroma153Gdradioisotopesource.Thedisplayedtimespanis0.4seconds.Afteraccumulatingandfilteringdigitizedpulsesfromthe89goodsensors,wegeneratedthegamma-rayspectrumshowninFigure14.

Figure14.Gamma-rayspectrumof153Gdradioisotopesourceacquiredusingmicrowavereadoutand89microcalorimetersensors.Thetwobrightlinesat97and103keVaregamma-raysfrom153Gd.Mostofthefeaturesbetween40and50keVarex-raysfromthe

Page 14: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

13

Eudaughterproduct.Thefeaturesbetween70and90keVarex-rayescapeeventsfromtheSnabsorbersandPbfluorescencefromthesourcepackaging.Thepeak-to-backgroundratioinFig.14varieswithenergy,asexpected,butis>103forthemainGdlinesofinterest.Anexpandedviewofthe97keVregionisshowninFigure15.

Figure15.Zoomedviewof97keVspectralregionfromFig.14replottedwithalinearverticalscale.Thefull-width-at-half-maximumofthe153Gdgamma-raylineobtainedfromaGaussianfit(red)tothedata(blue)is55eV,almost10timesnarrower(better)thanhigh-puritygermanium.Thespectrumwasobtainedbysummingspectrafrom89individualsensors.ThesumofafinitenumberofGaussianswithdifferentwidthsisnotitselfaGaussianwhichexplainsthedifferencebetweentheblueandredtraces.Theseresultscompriseafullysuccessfuldemonstrationofmicrowavereadoutwithcryogenicsensors.Wereadout128sensorchannelswithoneamplifier,a4-foldimprovementinmultiplexingfactoroverpreviouswork.Significantfurtherincreasesinthemultiplexingfactorwillbeachievedinthenearfuture.Wehaveconclusivelyshownthatthereadoutnoiseofourtechniqueallowsgamma-rayspectroscopywithalmost10xbetterresolutionthanhighpuritygermanium.Finally,theuseofmicrowavereadoutproducesalargesimplificationofthespectrometerdesignasshowninFigure16.ThisworkcompletedaM2milestonescheduledfor12/31/2016andfulfillsthesecondbroadvisionoutlinedintheoriginalproposal.

Page 15: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

14

Figure16.ProjectresearchersBenMates(left)andJohnGard(right)standingbytheSLEDGEHAMMERspectrometer.Theredarrowatleftindicatestwobluecoaxialcablesthatcarryallthesignalsusedtoreadout128sensors.Previousreadoutschemesrequiredmany10sofcables.Theredarrowatrightshowsmeasuredmicrowavetransmissionthroughthereadoutcircuit.PreviewofFutureResultsTremendousperformancegainsarenowwithinreach.EachROACH2unitofourmicrowaveelectronicscanmanipulate500MHzandourbudgetallowedustopurchase2ROACH2unitscorrespondingto1GHzofactivebandwidth.However,theHEMTamplifierthatweareusingprovides4GHzofpotentialbandwidth.ThereisnotechnicalobstacletobuyingmoreROACH2unitstousethefull4GHz.Inaddition,wearenowdiscussingyetmorecapableelectronicswithacommercialsupplierwhereinasingleunitcanmanipulate4GHz.Wehaveusedresonatorswith6MHzspacingsofarbuthavealreadydemonstratedthat3MHzspacingsarerealistic.With4GHzofbandwidthand3MHzresonatorspacings,1300sensorchannelscanbemeasuredusingasingleamplifier.Forcomparison,previous,non-microwavetechniquesonlyallowed32gamma-raysensorsperamplifier.Theresultsobtainedduringthisprojecthavetransformedthepotentialforlargearraysofcryogenicsensors.Thisadvancehasresultedinconsiderablerecognition.Dr.BenMateshasbeeninvitedtospeakatanupcominginternationalconferenceandsimilarreadoutworkhasbeeninitiatedatLosAlamos,Argonne,NASAGoddard,andSLAClaboratories.AlltheseprogramsareusingRF-SQUIDsdesignedbyourteamattheUniversityofColorado.SummaryWesuccessfullydevelopedhardware,firmware,andsoftwarethatenabledthefulldemonstrationofmicrowavereadouttechniques.Wedemonstratedthatthesetechniquescanbeusedtomeasuresignalsfromnetworksofdiverseconventionalsensorsasmightbeusedforsafeguardsorprocessmonitoringinalargenuclearfacility.Wealsodemonstratedthatmicrowavereadouttechniquescanenableasubstantialincreaseinthesizeofarraysofcryogenicsensors.Wehaveassembledauniquegamma-rayspectrometerbasedoncryogenicmicrocalorimeterswithmicrowavereadoutanddemonstrated10xbetterenergyresolutionthanpossiblewithhighpuritygermaniumsensors.

Page 16: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

15

Publications

• D.A.Bennett,J.A.B.Mates,J.D.Gard,A.S.Hoover,M.W.Rabin,C.D.Reintsema,D.R.Schmidt,L.R.Vale,J.N.Ullom,"IntegrationofTESmicrocalorimeterswithmicrowaveSQUIDmultiplexedreadout,"IEEETransactionsonAppliedSuperconductivity,25(2015)2101405.

• J.A.B.Mates,D.T.Becker,D.A.Bennett,J.D.Gard,J.P.Hays-Wehle,J.W.Fowler,G.C.Hilton,C.D.Reintsema,D.R.Schmidt,D.S.Swetz,L.R.Vale,J.N.Ullom,“Simultaneousreadoutof128gamma-raytransition-edgemicrocalorimetersusingmicrowaveSQUIDmultiplexing,”inpreparationforAppliedPhysicsletters.

• J.D.Gard,D.Becker,D.A.Bennett,J.D.Fowler,G.C.Hilton,J.A.B.Mates,C.D.Reintsema,D.Schmidt,D.Swetz,J.N.Ullom,L.R.Vale,J.Hays-Wehle,“AscalablereadoutformicrowaveSQUIDmultiplexingoftransition-edgesensors”,inpreparationforJournalofLowTemperaturePhysics.

Presentations(includingbyNISTcollaboratorsonjointwork)

• “MicrowaveMultiplexedReadoutforLargeArraysofTESMicrocalorimeters”,D.A.Bennett,J.A.B.Mates,J.Brevik,J.Gao,J.P.Hays-Wehle,J.W.Fowler,J.Gard,G.C.Hilton,C.D.Reintsema,D.R.Schmidt,L.R.Vale,J.N.Ullom,R.Winkler,A.S.Hoover,M.W.Rabin,oralpresentationattheSymposiumonRadiationMeasurementandApplications,June2014,AnnArborMI.

• “MicrowaveMultiplexedReadoutforLargeArraysofTESMicrocalorimeters”,D.A.Bennett,J.A.B.Mates,J.P.Hays-Wehle,J.W.Fowler,J.Gard,G.C.Hilton,C.D.Reintsema,D.R.Schmidt,L.R.Vale,J.N.Ullom,O.Noroozian,R.Winkler,A.S.Hoover,M.W.Rabin,oralpresentationatthe2014AppliedSuperconductivityConference,Aug.2014,CharlotteNC.

• “MicrowaveMultiplexedReadoutforLargeArraysofCryogenicSensors”,D.A.Bennett,D.T.Becker,J.D.Gard,J.A.B.Mates,C.D.Reintsema,J.W.Fowler,G.C.Hilton,D.R.Schmidt,L.R.Vale,andJ.N.Ullom,AstronomySignalProcessingandElectronicsResearchWorkhop,Jan.2016,CapetownSouthAfrica.

• “AdvancesinMicrowaveSQUIDMultiplexers”,J.A.B.Mates,D.T.Becker,D.A.Bennett,J.D.Gard,J.PHays-Wehle,G.C.Hilton,C.D.Reintsema,L.R.Vale,J.N.Ullom,oralpresentationattheAppliedSuperconductivityConference,Sept.5-9,2016,DenverCO.

• “FirmwareDevelopmentfortheRead-outofHigh-bandwidthSensorsUsingMicrowaveSQUIDMultiplexers”,J.D.Gard,J.A.B.Mates,D.Becker,J.N.Ullom,D.A.Bennett,G.C.Hilton,J.W.Fowler,C.D.Reintsema,L.R.Vale,posterpresentedattheAppliedSuperconductivityConference,Sept.5-9,2016,DenverCO.

• “MaximizingMultiplexingFactorsforHigh-Sampling-RateMicrowaveSQUIDMultiplexers”,D.Becker,D.Bennett,J.Gard,G.Hilton,J.A.B.Mates,C.Reintsema,D.

Page 17: Microwave Readout Techniques for Very Large Arrays of ... Reports/FY 2013/13-4835 NEUP... · Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors Fuel Cycle Research

16

Schmidt,D.Swetz,J.Ullom,L.Vale,posterpresentedattheAppliedSuperconductivityConference,Sept.5-9,2016,DenverCO.

• “SLEDGEHAMMER:amicrowavemultiplexedtransitionedgesensorarrayfornuclearnon-proliferationapplications”,D.Schmidt,D.Bennett,D.Becker,J.Gard,G.Hilton,V.Kotsubo,J.A.B.Mates,C.Reintsema,D.Swetz,L.Vale,J.Ullom,M.Croce,A.Hoover,M.Rabin,L.Sexton,J.Wilson,oralpresentationattheAppliedSuperconductivityConference,Sept.5-9,2016,DenverCO.

• “MicrowaveSQUIDmultiplexerdevelopment”,J.A.B.Mates,invitedoralpresentationatthe17thInternationalWorkshoponLowTemperatureDetectors,July17-21,2017,KurumeJapan.

• “FirmwareDevelopmentforMicrowaveSQUIDMultiplexerReadout”,J.D.Gard,D.Becker,D.A.Bennett,J.D.Fowler,G.C.Hilton,J.A.B.Mates,C.D.Reintsema,D.Schmidt,D.Swetz,J.N.Ullom,L.R.Vale,J.Hays-Wehle,posterpresentationrequestedatthe17thInternationalWorkshoponLowTemperatureDetectors,July17-21,2017,KurumeJapan.

• “Alarge-scaledemonstrationofmicrowaveSQUIDmultiplexing:theSLEDGEHAMMERTESgamma-raymicrocalorimeterinstrument”,D.Becker,D.A.Bennett,J.D.Gard,J.P.Hays-Wehle,J.D.Fowler,G.C.Hilton,J.A.B.Mates,C.D.Reintsema,D.R.Schmidt,D.S.Swetz,L.R.Vale,andJ.N.Ullom,oralpresentationrequestedatthe17thInternationalWorkshoponLowTemperatureDetectors,July17-21,2017,KurumeJapan.