Top Banner
1 27301 MicrostructureProper-es Fracture Toughness: maximize via microstructure Profs. A. D. RolleB, M. De Graef Microstructure Properties Processing Performance Last modi.ied: 3 rd Dec. ‘15 Please acknowledge Carnegie Mellon if you make public use of these slides
46

Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’...

Aug 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

1

27-­‐301  Microstructure-­‐Proper-es  

Fracture  Toughness:    maximize  via  microstructure    

Profs.  A.  D.  RolleB,  M.  De  Graef  

Microstructure Properties

Processing Performance

Last  modi.ied:  3rd  Dec.  ‘15

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 2: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

2

Lab  2:  points  of  interest •  Consider  the  following  items  in  the  (second)  Lab.  •  Relate  the  fracture  morphology  of  wood  to  what  we  discussed  in  this  lecture  concerning  laminated  

composites.  •  For  the  wood  experiments,  see  if  you  can  idenPfy  a  point  group  that  applies  to  the  symmetry  of  

the  properPes.  •  Compare  wood  to  man-­‐made  composites:  is  it  more  or  less  complicated  than,  say,  carbon  

reinforced  plasPcs?  •  For  the  steel  Lab,  try  using  the  Thermocalc  results  to  define  which  second  phases  (mainly  carbides)  

you  expect  to  observe  in  your  heat  treated  samples.  •  Can  you  detect  changes  in  fracture  morphology  as  a  funcPon  of  test  temperature  (steels)?    Can  you  

relate  the  fracture  surface  features  to  the  measured  grain  size?    What  about  the  spacing  of  the  pearlite  colonies  (depending  on  the  microstructure)?  

•  Can  you  detect  changes  in  fracture  morphology  as  a  funcPon  of  microstructural  change?    For  example,  in  the  normalized  (pearliPc)  condiPon,  can  you  detect  the  lamellae  at  the  fracture  surface?    Do  you  think  that  there  is  any  interacPon  between  the  fracture  process  and  the  lamellar  structure?  

•  For  the  quench+tempered  condiPon,  can  you  relate  the  parPcle  (carbide)  spacing  to  features  on  the  fracture  surface?  

•  For  the  martensiPc  condiPon,  can  you  esPmate  the  energy  that  should  be  absorbed  if  it  goes  only  towards  creaPng  crack  surface?    How  does  this  number  compare  with  a  reasonable  surface  energy  for  iron?  

•  The  fracture  surfaces  of  the  steel  oXen  show  features  that  resemble  delaminaPon:  what  causes  this,  and  why  would  you  not  see  them  under  briBle  fracture  condiPons?    Can  you  relate  them  to  the  banding  that  you  somePmes  see  in  metallography?  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 3: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

3

Objective •  The  objecPve  of  this  lecture  is  to  show  you  how  to  

exploit  microstructure  in  order  to  maximize  toughness,  especially  in  briBle  materials.  

•  Part  of  the  moPvaPon  for  this  lecture  is  to  explain  the  science  that  supports  and  informs  the  second  Lab  on  the  sensiPvity  of  mechanical  properPes  to  microstructure.  

•  Note  that  the  equaPons  used  are  not  derived  -­‐  rather  the  emphasis  is  on  basic  principles  and  a  broad  range  of  methods  for  toughening.  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 4: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

Questions  &  Answers 1. Describe  3  ways  in  which  microstructure  can  be  used  to  maximize  fracture  toughness.  LaminaPon,  crack  bridging  and  transformaPon  toughening.  

2. Explain  what  is  meant  by  the  “weakest  link  principle”  in  connecPon  with  briBle  materials.  In  a  briBle  materials  it  is  the  largest  flaw  (aka  weakest  link)  that  will  open  and  cause  the  material  to  fail.  

3. Explain  the  terminology  used  to  orient  toughness  tests.  See  the  notes.  Which  orientaPons  will  show  high  toughness  and  which  low  values?  For  example,  weak  planes  oriented  perpendicular  to  a  crack  will  divert  the  crack  and  give  higher  toughness.  How  does  this  relate  to  laminated  composites?  See  above.  

4. Discuss  the  effect  of  impuriPes  in  steels,  for  example,  on  the  trade-­‐off  between  strength  and  toughness.  ImpuriPes  (e.g.  O,  N,  C,  S)  in  any  metal  typically  have  low  solubility  and  are  thus  present  as  ceramic  parPcles.    These  parPcles  act  as  nucleaPon  points  for  cracks  and  voids,  which  lower  toughness  (for  a  given  strength).  

5. Describe  the  various  extrinsic  toughening  methods  for  briBle  materials  and  the  pros  and  cons  of  each  one.  See  the  notes  for  these  details.  

6. Describe  how  transformaPon  toughening  works.  Briefly,  metastable  parPcles  transform  only  when  a  high  tensile  stress  near  a  crack  Pp  is  applied  to  them;  the  transformaPon  strain  results  in  extra  energy  required  to  advance  a  crack.  What  is  the  point  of  adding  dopants  to  ZrO2  in  order  to  control  transformaPon  temperatures?  This  controls  the  degree  of  metastability.  Why  is  there  a  criPcal  size  for  the  parPcles  of  ZrO2?  Because  the  parPcles  only  retain  their  high  temperature,  metastable  state  by  being  containing  in  the  matrix.  

7. How  is  micro-­‐cracking  similar  to  transformaPon  toughening,  and  how  does  it  differ?  Similar  in  that  work  is  done  to  crack  a  parPcle  which  contributes  to  toughness;  obviously  differs  in  the  mechanism.  

8. How  can  we  esPmate  the  contribuPon  to  (or  increase  in)  toughness  from  transformaPon  toughening  or  microcracking?  See  notes  for  an  equaPon  involving  the  process  zone  height.    

9. How  do  fibers  toughen  ceramic  matrix  composites?  By  crack  bridging,  i.e.  the  fibers  carry  load  across  a  crack.    Why  is  it  helpful  to  toughness  if  the  fibers  are  not  perfectly  bonded  to  the  matrix?  Because  work  has  to  be  done  to  pull  the  fibers  out  of  their  matrix.  

4

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 5: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

5 Applications?  �Why  do  we  care  about  toughness?

Courtney  �(Ch.  13)

http://ecow.engr.wisc.edu/cgi-­‐bin/get/neep/541/allentodd/notes/

•  Steels  are  used  to  build  pressure  vessels  for  nuclear  reactors.    The  irradiaPon  that  these  vessels  experience,  however,  lowers  the  toughness  of  the  steels  and  raises  the  DBTT  (see  figures  below  for  Charpy  impact  energy  versus  test  temperature).    This  must  be  allowed  for  in  the  design  and  operaPon  of  the  reactors.  

•  This,  and  related  issues,  is  discussed  in  the  course  on  Materials  for  Nuclear  Energy  Systems,  27-­‐725.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 6: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

6

Applications:  ceramic  gas  turbines The  thermal  efficiency  of  a  gas  turbine  engine  is  directly  related  to  its  operaPng  temperature.    ConvenPonal  gas  turbines  use  Ni-­‐based  alloys  whose  operaPng  temperature  is  limited  by  their  melPng  point  (although  clever  design  of  thermal  barrier  coa2ngs  and  cooling  has  dramaPcally  raised  their  capabiliPes).    Ceramic  (oxide)  components  have  much  higher  melPng/soXening  points  but  their  intrinsic  toughness  is  far  too  low.    Therefore  the  toughening  of  structural  ceramics  is  essenPal  if  these  systems  are  to  succeed.    The  silicon  nitride-­‐based  part  shown  (leX)  has  machined  strengths  of  up  to  960  MPa  and  as-­‐processed  strengths  of  up  to  706  MPa.  

www.p2pays.org/ref%5C08/07468.pdf  -­‐ www1.eere.energy.gov/vehiclesandfuels/pdfs/success/advanced_gas_turbine.pdf

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 7: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

7

Key  Points •  Maximizing  fracture  resistance  requires  maximizing  work  done  in  

breaking  a  material.  •  Minimize  defect  content,  especially  voids,  cracks  in  briBle  materials.  •  Increasing  toughness  generally  requires  adding  addiPonal  structural  

components  to  a  material,  either  at  the  microscopic  scale  or  by  making  a  composite.  

•  If  appropriate  (in  relaPon  to  the  way  in  which  a  material  is  loaded),  laminate  the  material  i.e.  put  in  crack  deflecPng  planes.  

•  If  appropriate  (in  relaPon  to  the  way  in  which  a  material  is  loaded),  include  sPff  fibers  in  the  material  to  give  load  transfer  and  fiber  pull-­‐out.    

•  Design  the  composite  to  have  inclusions  that  deflect  the  crack  path.  •  Design  the  composite  to  include  parPcles  that  transform  (or  crack)  and  

thus  require  work  to  be  done  for  crack  propagaPon  to  take  place.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 8: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

8

Strength  versus  toughness •  If  you  imagine  tesPng  the  (tensile)  strength  of  a  material  

that  you  could  make  arbitrarily  tough  or  briBle,  how  would  its  measured  strength  vary?  

Toughness

Breaking  Strength

?

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 9: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

9 Strategies  for  toughness  and  microstructure

•  Yield  strength  depends  on  the  obstacles  to  dislocaPon  moPon.  

•  Toughness  is  more  complex:  there  is  no  direct  equivalent  to  obstacles  to  dislocaPon  moPon.  

•  Instead,  we  must  look  for  ways  to  (a)  eliminate  or  minimize  cracks;  (b)  ways  to  maximize  the  energy  cost  of  propagaPng  a  crack.  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 10: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

10

(a)  Minimize  or  eliminate  cracks •  How  do  we  eliminate  cracks?  •  First,  consider  the  sources  of  cracks:  

-­‐  in  metals,  voids  from  solidificaPon  are  deleterious  (especially  in  faPgue),  so  minimizing  gas  content  during  solidificaPon  helps  (Metals  Processing!).  -­‐  rough  surfaces  (e.g.  from  machining)  can  be  made  smooth.  -­‐  also  in  metals,  large,  poorly  bonded  (to  the  matrix)  second  phase  parPcles  are  deleterious,  e.g.  oxide  parPcles.    Therefore  removal  of  intersPPals  (O,  N,  C,  S)  from  steel  melts  (or  Fe  &  Si  from  Al)  is  important  because  they  tend  to  react  with  the  base  metal  to  form  briBle  inclusions  (as  in,  e.g.  clean  steel  technology).  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 11: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

11

(a)  Minimize  or  eliminate  cracks •  How  do  we  minimize  cracks,  either  number  (density)  or  their  effect?  

Grain  Structure:  -­‐  there  are  various  mechanisms  that  lead  to  cracks  at  grain  boundaries,  or  at  triple  juncPons  between  boundaries.    Therefore  -­‐  in  some  materials  -­‐  making  the  grain  size  as  small  as  possible    is  important  because  it  determines  the  maximum  crack  size.    Crack  size  maBers  because  of  stress  concentraPon  at  the  crack  Pp:  longer  cracks  mean  higher  stress  concentraPons.  -­‐  how  to  minimize  grain  size?    Either  by  thermomechanical  processing  (maximum  strain  +  minimum  recrystallizaPon  temperature)  or  by  starPng  with  small  powders  and  consolidaPng  to  100%  density.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 12: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

12

Distributions •  Remembering  that  it  is  the  largest  crack  that  limits  breaking  strength,  

it  is  not  the  average  crack  length  that  maBers  but  rather  the  maximum  crack  size  that  we  should  care  about.  

•  For  materials  in  which  the  grain  size  determines  the  typical  crack  size,  experience  shows  that  the  grain  size  distribu2on  is  approximately  constant  (and  approximately  log-­‐normal).    The  maximum  grain  size  observed  is  a  small  mulPple  of  the  average  -­‐  about  2.5  Pmes.  

•  Also  important  in  distribuPons  is  the  spa2al  distribu2on  of  parPcles  (that  can  generate  cracks);  cracks  at,  or  near  the  surface  are  more  deleterious  than  cracks  in  the  interior.  

•  In  briBle  materials  in  parPcular,  it  is  the  largest  flaw  that  determines  the  (breaking)  strength.    Therefore  we  refer  to  the  weakest  link  principle.    This  in  turn  means  that  we  must  consider  extremes  values  in  the  distribu2on  of  flaws.  

•  A  useful  source  of  informaPon  on  extreme  values  is  the  on-­‐line  NIST  Handbook:  hBp://www.itl.nist.gov/div898/handbook/prc/secPon1/prc16.htm.    Also  search  with  key  words  “extreme  values  strength  materials”.      

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 13: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

13

Spatial  Distributions •  Anisotropic  spaPal  distribuPons  are  most  commonly  

encountered  in  thermomechanically  processed  metals.    They  occur,  for  example,  in  silicon  nitride  processed  (tape  casPng  +  sintering)  to  promote  direcPonal  growth  of  beta-­‐Si3N4  for  high  thermal  conducPvity  heat  sink  materials.  

•  The  sensiPvity  of  toughness  to  the  direcPon  in  which  the  tesPng  is  performed  has  led  to  a  special  jargon  for  specimen  orientaPon.  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 14: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

14

Specimen  Orientation  Code

[Hertzberg]

•  The  first  leBer  denotes  the  loading  direcPon;  the  second  leBer  denotes  the  direcPon  in  which  crack  propagaPon  occurs.    This  is  an  example  of  bi-­‐axial  alignment  which  just  means  that  two  direcPons  have  some  parPcular  alignment,  not  just  one.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 15: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

15

Mechanical  Fibering

[Hertzberg]

Lowest�toughness

•  Any  second  phase  parPcles  present  from  solidificaPon  tend  to  be  elongated  and  dispersed  in  sheets  parallel  to  the  rolling  plane;  called  “stringers”.    Such  stringers  are  commonly  found  in  (older)  aerospace  aluminum  alloys.  

•  Toughness  in  the  S-­‐L  or  S-­‐T  orientaPons  is  typically  much  lower  than  for  the  L-­‐T  or  L-­‐S  orientaPons  because  the  crack  plane  is  parallel  to  the  planes  on  which  the  parPcles  lie  close  to  one  another.  

•  Charpy  tests  on  steels  (Lab  2,  for  example)  oXen  show  delaminaPons  for  L-­‐S  or  T-­‐S  oriented  tests.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 16: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

16

Inclusion  effects

•  Graph  plots  variaPon  in  strength  with  (plane  strain)  toughness  with  varying  sulfur  contents  in    0.45C-­‐Ni-­‐Cr-­‐Mo  steels.  

•  Increasing  levels  of  S  lead  to  lower  toughness  at  the  same  strength  level.  

•  This  occurs  because  the  sulfur  is  present  as  sulfide  inclusions  in  the  steel.  

•  “Clean  steel”  technologies  for  steel  making  have  reduced  this  problem  in  recent  years.  

[Dieter]

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 17: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

17

Laminate  Composites

[Hertzberg]

•  The  weakness  of  such  layers  of  inclusions,  which  provide  planes  on  which  crack  nucleaPon  is  relaPvely  easy,  can  however  be  exploited.  

•  By  providing  planes  of  low  crack  resistance  perpendicular  to  the  anPcipated  crack  propagaPon  direcPon,  a  crack  can  be  deflected,  thereby  reducing  the  load  at  the  crack  Pp  and  increasing  the  work  that  must  be  done  in  order  to  advance  the  crack  Pp.  

•  In  designing  a  laminate  composite,  it  is  important  to  balance  the  fracture  toughness  (briBleness)  against  the  interfacial  weakness.    The  more  briBle  the  matrix  (layers),  the  weaker  the  interfaces  between  the  layers  need  to  be.    Example:  Wood,  Mollusc  shells  

SiC-­‐Yiber  reinforced  Cu. Web:  femas-­‐ca.eu,�via  images.google

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 18: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

18

Effect  of  lamination  on  the  DBTT •  The  effect  of  orienPng  the  laminaPons  of  a  composite  in  

the  crack  arrestor  configuraPon  is  to  dramaPcally  lower  the  transiPon  temperature.  

•  This  is  actually  an  example  of  crack  deflec2on.  

[Hertzberg,  after  Embury]

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 19: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

19

Explanation  of  Lamination This  crack  propagaPon  

direcPon  leads  to  delaminaPon  and  crack  blunPng  (more  toughness)  

This  crack  propagaPon  direcPon  follows  the  inclusion+grain  shape  (less  toughness)  

[Hertzberg]

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 20: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

20

Energy  absorption:  1 •  How  do  we  increase  the  amount  of  energy  consumed  in  

propagaPng  a  crack?  -­‐  One  method,  already  discussed,  is  to  maximize  the  amount  of  plasPc  work.    This  requires  the  yield  strength  to  be  minimized  so  as  to  maximize  the  size  of  the  plasPc  zone.  -­‐  For  very  tough  materials,  however,  it  turns  out  that  the  same  parameters  that  control  ducPlity  also  affect  toughness.    Lower  densiPes  of  second  phase  parPcle  increase  toughness.    Second  phase  parPcles  well  bonded  to  the  matrix  increase  toughness.    Small  differences  in  thermal  expansion  coefficient  help  (Why?).  

•  Read  papers  by  Prof.  Warren  Garrison’s  group.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 21: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

21

Energy  absorption:  2 •  Other  methods  of  toughening  materials  are  generally  called  

extrinsic.    There  are  three  general  classes  of  approach:    1)    Crack  deflecPon  (and  meandering)  2)    Zone  shielding  3)    Contact  shielding    

•  The  term  “shielding”  means  that  the  crack  Pp  is  shielded  from  some  part  of  the  applied  stress.  

•  Up  to  this  point,  the  discussion  has  been  mostly  about  metal-­‐based  materials  which  are  intrinsically  tough  to  being  with  (except  at  low  temperatures).    Extrinsic  toughening  methods  are  mostly  concerned  with  ceramics  in  which  the  intrinsic  toughness  is  low.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 22: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

22

Energy  absorption:  3 •  Sub-­‐divisions  of  extrinsic  toughening  methods:            1)    Crack  deflecPon  (and  meandering)  

   2)    Zone  shielding  

 -­‐  2A  TransformaPon  Toughening    -­‐  2B  Microcrack  toughening    -­‐  2C  Void  formaPon  

3)    Contact  shielding    -­‐  3A  Wedging/  crack  bridging    -­‐  3B  Ligament/fiber  bridging    -­‐  3C  Crack  sliding,  interference    -­‐  3D  PlasPcity  induced  crack  closure  

 

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 23: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

23

1    Crack  de.lection •  If  parPcles  of  a  second  phase  are  present,  large  differences  in  

elasPc  modulus  can  either  aBract  or  repel  the  crack.  •  Some  authors  (e.g.  Green)  disPnguish  between  crack  bowing  and  

crack  deflec2on.    Technically,  the  former  is  toughening  from  deflecPon  in  the  plane  of  the  crack  and  the  laBer  is  deflecPon  out  of  the  plane  of  the  crack.  

•  In  either  case,  the  net  result  is  that  the  crack  Pp  no  longer  sees  as  large  a  stress  as  it  would  if  the  crack  were  straight,  and  in  the  plane.  

•  Crack  deflecPon  can  be  caused  by  parPcles  that  are  more  resistant  to  cracking,  or  have  different  elasPc  sPffness  (higher  or  lower  modulus).  

•  Laminate  composites  also  achieve  crack  deflecPon,  as  previously  discussed.  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 24: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

24

1.  Crack  de.lection:�examples

[Green]

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 25: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

25

Zone  Shielding:  2A  transformation  toughening

•  Various  mechanisms  exist  for  shielding  crack  Pps  from  some  of  the  applied  (and  concentrated)  stress.  

•  The  best  known  mechanism  is  transforma2on  toughening.  •  This  applies  to  both  metals  (stainless  steels,  Hadfield  steels)  and  

ceramics  (zirconia  addiPons).  •  The  principle  on  which  the  toughening  is  based  is  that  of  

including  a  phase  that  is  metastable  at  the  service  temperature  and  which  will  transform  when  loaded  (but  not  otherwise).  

•  The  transformaPon  always  has  a  volume  change  associated  with  the  change  in  crystal  structure,  which  can  be  wriBen  as  a  strain.    The  product  of  stress  and  strain  is  then  the  work  done  or  expended  during  the  (stress-­‐induced)  transformaPon.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 26: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

26 2A  Transformation  toughening:  transformation  strain

•  The  large  volume  change  on  transformaPon  is  equivalent  to  a  significant  transforma2on  strain  which  is  the  key  to  the  success  of  the  method.    Recall  that  our  basic  measure  of  fracture  resistance  is  the  work  done,  ∫  σdε,  in  breaking  the  material.  

•  The  volume  change  (dε)  is  ~  4  %,  accompanied  by  a  shear  strain  of  ~  7  %.    Since  the  transformaPon  has  a  parPcular  habit  plane  (i.e.  a  crystallographic  plane  in  each  phase  in  common),  two  twin-­‐related    variants  occur  in  each  parPcle  so  that  the  shear  strains  are  (approximately)  canceled  out.    This  leaves  only  the  4  %  dilataPonal  (volume)  strain  that  contributes  to  the  work  done.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 27: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

27

2A  Transformation  toughening:  �phase  change  in  zirconia

•  The  classic  example  of  transformaPon  toughening  is  the  addiPon  of  a  few  (volume)  %  of  ZrO2  to  oxides  and  other  briBle  ceramics.  

•  The  highest  temperature  form  of  zirconia  is  cubic  (c-­‐ZrO2)  with  an  intermediate  tetragonal  form  (t-­‐ZrO2).  Both  of  these  have  significantly  larger  atomic  volumes  than  the  low  temperature,  monoclinic  form  (m-­‐ZrO2),  and  the  cubic  has  a  larger  volume  than  the  tetragonal  form.  

•  In  order  to  reduce  the  driving  force  for  the  tetragonal    monoclinic  transformaPon  (i.e.  lower  the  transformaPon  temperature),  some  “stabilizer”  is  added.    Typical  are  ceria  (Ce2O3)  and  yBria  (Y2O3).  

•  The  subtle  point  about  this  approach  is  that  some  “trick”  is  needed  in  order  to  keep  the  zirconia  from  transforming  once  the  material  is  cooled  to  room  temperature,  i.e.  to  maintain  it  in  a  metastable,  untransformed  state.  

•  The  following  slides  show  phase  relaPonships  for  ZrO2  with  CaO,  and    ZrO2  with  Y2O3.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 28: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

ZrO2  and  CaZrO2 •  In  pure  ZrO2  there  is  a  large  

volume  change  for  the  tetragonal  to  monoclinic  transiPon  upon  cooling,  starPng  at  about  1150  °C.    

•  This  leads  to  cracking  throughout  a  ZrO2  component  and  thus  total  mechanical  failure.    

•   This  is  avoided  by  doping  with  Calcia  from  3-­‐7  %  to  form  cubic  and  monoclinic  (and  no  tetragonal  about  1000  °C).  •   Below  this  T  diffusion  is  too  slow  to  form  enough  monoclinic  to  generate  the  unwanted  cracks.  •   “ParPally  Stabilized  Zirconia”  

28

Slide  courtesy  Dr.  Alpay,  Univ.  Connecticut:  http://www.ims.uconn.edu/~alpay/Group_Page/Courses/MMAT%20244/Lecture%2005.ppt Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 29: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

Yttria  Stabilized  Zirconia

•  The  monoclinic  transiPon  can  be  suppressed  even  further  by  stabilizing  zirconia  with  yBria  from  3-­‐8  %.  

•  Retains  cubic  and  tetragonal  phases  (avoiding  monoclinic)  down  to  roughly  700  °C.    

•  YBria,  parPally,  and  cubic  stablized  zirconia  (CZ)  are  commercially  useful.  

29

Slide  courtesy  Dr.  Alpay,  Univ.  Connecticut:  http://www.ims.uconn.edu/~alpay/Group_Page/Courses/MMAT%20244/Lecture%2005.ppt

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 30: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

30 2A  Transformation  toughening:  critical  size  of  zirconia  particles

•  An  important  consequence  of  the  volume  change  on  transformaPon  is  that  it  leads  to  an  elasPc  driving  force  that  opposes  the  transformaPon  for  parPcles  embedded  in  a  matrix  of  a  different  material.  

•  The  size  effect  is,  however,  quite  subtle.    If  we  were  to  consider  only  the  elasPc  energy  from  the  volume  change  then  this  would  be  proporPonal  to  the  (volumetric)  driving  force  for  the  phase  change.    In  fact,  however,  there  is  a  shear  strain  associated  with  the  phase  transformaPon  that  is  larger  than  the  dilataPonal  strain.    This  shear  strain  is  accommodated  by  having  mulPple  shear  variants,  whose  average  shear  strain  is  close  to  zero,  leaving  only  the  volume  change.    These  variants  have  interfaces  (boundaries)  between  them,  which  requires  the  creaPon  of  surface  area  in  the  transformaPon.    Therefore  there  is,  in  fact,  a  balance  between  the  release  of  volumetric  driving  force  (offset  by  the  dilataPonal  strain  energy)  and  the  creaPon  of  internal  interfaces  between  martensite  variants.  

•  Therefore  we  take  advantage  of  having  the  zirconia  embedded  as  small  parPcles  in  the  matrix  of  the  ceramic  to  be  toughened.  

•  The  parPcles  must  be  small  enough  for  the  elasPc  energy  term  to  be  effecPve.    The  upper  limit  in  parPcle  size  for  reten2on  of  the  high  temperature  (tetragonal)  phase  is  ~  0.5  µm.  

[Green]

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 31: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

31

2A  Transformation  toughening:  �transformation  →  work

•  Consider  the  effect  of  the  tensile  stress  in  the  vicinity  of  the  crack  Pp:    the  stress  removes  the  constraint  on  each  parPcle,  allowing  it  to  transform.    The  transformed  parPcle  was  metastable,  thermodynamically,  and  so  remains  in  the  low  T,  monoclinic  form  aXer  the  crack  has  gone  by.  

•  The  stress  acPng  to  cause  the  transformaPon  strain  performs  work  and  so  energy  is  consumed  in  the  phase  transformaPon.    This  energy  (work  done)  adds  to  the  surface  energy  required  to  create  crack  length.  

•  AddiPonal  toughening  arises  from  the  parPcles  causing  crack  deflecPon.  

Examinable

http://www.vertebr.ae/Blog/wp-­‐content/uploads/2010/02/zirconia-­‐transformation-­‐toughening-­‐in-­‐ceramics.gif

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 32: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

32

2A  Transformation  toughening:  �the  process  zone

•  The  region  in  which  transformaPon  occurs  becomes  the  crack  wake  as  the  crack  propagates.    The  region  around  the  crack  Pp  is  known  as  the  process  zone  because  this  is  where  the  toughening  process  is  operaPve.  

[Green] Crack  propaga2on  direc2on  

Process  zone  width  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 33: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

33 2A  Transformation  toughening:  �microstructure

•  Microstructural  evidence  for  the  transformaPon  is  obtainable  through  x-­‐ray  diffracPon  and  Raman  spectroscopy  (the  two  different  forms  of  zirconia  have  quite  different  infra-­‐red  spectra).  

•  (a)  lenPcular  parPcles  of  MgO-­‐stabilized  ZrO2  (untransformed)  in  cubic  ZrO2.  (b)  transformed  parPcles  of  ZrO2  around  a  crack  (dashed  line).  

[Chiang]

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 34: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

34 2A  Transformation  �toughening:  limits  on  toughening

•  As  the  parPcle  size  is  increased,  so  the  parPcles  become  less  and  less  stable;  the  transformaPon  becomes  easier  and  more  effecPve  at  toughening  the  material.  If  the  parPcles  become  too  large,  however,  the  toughening  is  lost  because  the  parPcles  are  no  longer  stabilized  in  their  high  temperature  form.  

•  Effect  of  test  temperature?  •  Effect  of  stabilizing  addiPons  to  

the  ZrO2?  

[Green]

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 35: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

35 2A  Transformation  �toughening:  quantitative  approach

•  It  is  not  possible  to  lay  out  the  details  of  how  to  describe  transformaPon  toughening  in  a  fully  quanPtaPve  fashion  here.  

•  An  equaPon  that  describes  the  toughening  effect  is  as  follows,  where  K  is  the  increment  in  toughness  (units  of  stress  intensity,  MPa√m):                      ∆K  =  C  E  Vtrans  εtrans  √h  /  (1-­‐ν)    C  is  a  constant  (of  order  1),  E  =  elasPc  modulus,    Vtrans  =  volume  fracPon  transformed,    εtrans  =  transformaPon  strain  (dilataPon,  i.e.  bulk  expansion),    h  is  the  width  of  the  process  zone,  and    ν is  Poisson’s  raPo.  

•  What  controls  the  width  of  the  process  zone?

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 36: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

36

2B    Microcracking •  Less  effecPve  than  transforma2on  toughening  is  

microcracking  in  the  process  zone.  •  Microstructural  elements  are  included  that  crack  over  

limited  distances  and  only  at  the  elevated  (tensile)  stresses  present  in  the  crack  Pp.  

[Green]

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 37: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

37

2B    Microcracking •  The  principle  of  Micro-­‐cracking  as  a  toughening  mechanism  is  that  one  designs  

the  material  so  that  addiPonal  (micro-­‐)cracking  occurs  in  the  vicinity  of  the  crack  Pp  as  it  advances,  thereby  increasing  the  crack  area  created  (per  unit  advance  of  crack),  thereby  increasing  the  toughness  (resistance  to  crack  propagaPon).  

•  This  is  most  effecPve  in  two-­‐phase  ceramics  in  which  the  2  phases  have  different  CTEs.    As  the  material  cools  aXer  sintering  (or  other  high  temperature  processing),  one  phase  is  in  tension  (and  the  other  in  compression,  to  balance).    The  phase  under  residual  tensile  stress  will  crack  more  easily  than  the  other  one  under  addiPonal  tensile  load,  e.g.  near  a  crack  Pp.      

•  Now  we  have  to  consider  what  can  happen  in  the  material.    If  the  residual  stress  is  too  high,  then  the  phase  in  tension  will  crack  during  cooling.    If  it  is  enPrely  (micro-­‐)cracked,  then  no  further  cracking  can  occur  at  a  crack  Pp  (to  absorb  energy)  and  the  toughening  effect  is  lost.    What  controls  this,  however,  is  the  grain  size:  smaller  grain  sizes  are  more  resistant  to  cracking.    To  find  the  criPcal  grain  size,  dc,  we  use  the  Griffith  equaPon,  with  Kco  as  the  fracture  toughness  and  σR  as  the  residual  stress,  subsPtuPng  grain  size  for  crack  size:                                                                                                                      dc  =  (  Kco  /  σR  )2

•  The  process  zone  size,  rc,  then  depends  on  the  raPo  of  the  actual  grain  size,  d,  to  the  criPcal  grain  size:    

•  The  graph,  from  Courtney,  shows  how  one  needs  to  be  within  a  certain  rather  narrow  range  of  grain  size  in  order  to  have  a  finite  process  zone  size  and  therefore  effecPve  toughening.    Grain  sizes  larger  than  the  criPcal  grain  size  simply  result  in  spontaneous  cracking.    Too  small  grain  sizes  (<  0.6  dc)  mean  no  micro-­‐cracking  at  the  crack  Pp.  

rcd≈

0.232

1− ddc

$

% &

'

( )

2

[Courtney]

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 38: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

38

2B    Microcracking:  particles •  Microcracking  depends  on  second  phase  parPcles  that  can  crack  easily.  •  The  cracking  tendency  depends  on  parPcle  size  (typically,  1µm):  if  they  are  too  small,  then  the  stress  

intensity  does  not  reach  their  criPcal  Kc,  based  on  the  Griffith  equaPon.  •  (Tensile)  residual  stresses  aid  cracking,  so  differences  in  thermal  expansion  (with  the  matrix)  are  

important.  Recall  that  the  thermal  expansion,  as  a  (stress-­‐free)  strain,  is  equal  to  the  Coefficient  of  Thermal  Expansion  (CTE  or  α)  mulPplied  by  the  change  in  temperature  (∆T),  εthermal  =  α  ∆T.    Where  a  volumetric  strain  is  important,    V0+∆V  =  (l0  +  ∆l)3  =  {  l0  (1+εthermal)  }3  =  l03  (1+3ε+3ε2+ε3)  ≈    V0

 (1+3εthermal)  ;  ∆V/V  =  3εthermal  •  An  equaPon  that  describes  the  toughening  effect  is  as  follows,  where  ∆K  is  again  the  increment  in  

toughness  (units  of  stress  intensity):                      ∆K  =  C  Vf  E  εcrack  √h  /  (1-­‐ν)    C  is  a  constant  (of  order  1),    E  =  modulus,    εcrack  =  cracking  strain  (dilataPon),  h  is  the  width  of  the  process  zone,  and    ν is  Poisson’s  raPo.    The  cracking  strain  is  approximately  3*strain  associated  with  the  difference  in  CTE:  εcrack  ≈  3∆α  ∆T.  

•  Note  the  strong  similarity  to  the  equaPon  that  describes  transformaPon  toughening!  The  only  difference  is  the  physical  meaning  of  the  strain  term.  If  the  volume  fracPon,  Vf,  is  not  given,  one  can  assume  =1,  if  there  are  nearly  equal  fracPons  of  the  two  phases  so  that  most  grains  crack.    

•  See  the  next  slide  for  an  explanaPon  of  how  the  cracking  strain  is  equivalent  to  an  eigenstrain.  

Examinable

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 39: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

expanding  region  

 isolate  region    

expansion  

eigenstrains  

surface  tracPon  

non-­‐expanding  matrix  

place  back  into  matrix  

 eigenstresses  

Thermoelastic  Stress

J.  D.  Eshelby,  Proceedings  of  the  Royal  Society  of  London  A,  vol.  252,  pp.  561-­‐569,  1959

39

Slide courtesy of B. Anglin &

S. Donegan

Page 40: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

40

2C    Void  formation •  Void  formaPon  in  a  process  zone  can  have  a  similar  

effect  to  micro-­‐cracking.    In  materials  such  as  high  strength  steels,  e.g.  4340,  the  source  of  the  voiding  is  ducPle  tearing  on  a  small  scale  as  the  crack  opens.  

•  The  spaPal  organizaPon  of  the  voids  is  important.    Random  distribuPons  are  beBer  than  either  clusters  or  sheets.    Carbide  parPcles  in  steels,  or  dispersoid  parPcles  in  aluminum  alloys  (e.g.  Al3Fe)  are  typical  nucleaPon  sites  for  voids.    Sheet-­‐like  sets  of  voids  can  arise  from  carbide  parPcles  that  have  grown  on  martensite  or  bainite  laths  during  tempering  of  martensiPc  microstructures.  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 41: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

41 3A    Crack  wedging/  bridging •  Wherever  the  crack  results  in  interlocking  grain  shapes  

exerPng  force  across  the  crack,  stress  (intensity)  at  the  crack  Pp  is  reduced.  

[Chiang]

Crack�opening

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 42: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

42

3B    Fiber/ligament  bridging  (Composites) •  Anything  that  results  in  a  load  bearing  link  across  the  crack  (behind  the  Pp)  

decreases  the  stress  (intensity)  at  the  crack  Pp.  •  Either  rigid  (elasPc)  fibers  (ceramic  matrix  composites)  or  plasPc  parPcles  

(ducPle  metal  parPcles  in  an  elasPc  matrix)  are  effecPve.  •  In  order  to  esPmate  the  increase  in  toughness,  one  can  calculate  a  work  

associated  with  crack  advance  and  then  esPmate  with    ∆K  =  √(EG).  

[Chiang]

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 43: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

43

3B    Fiber/ligament  bridging •  Scanning  electron  micrographs  of  a  SiC  whisker  bridging  

at  various  stages  of  crack  opening.    From  leX  to  right,  the  stress  intensity  is  increasing.  

[Green]

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 44: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

44 3B    Fiber/ligament  bridging�strain  dependence

•  The  balance  between  fiber  strength,  matrix  strength  and  the  fiber/matrix  interface  is  criPcal.  

•  In  general,  a  relaPvely  weak  fiber/matrix  interface  promotes  toughness.  

•  Why?   [Green]

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 45: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

45

3D    Plasticity  induced  crack  closure •  PlasPcity  induced  crack  closure  is  another  way  of  staPng  the  effect  of  plasPc  deformaPon  around  the  crack  Pp.  

•  Very  tough  materials  exhibit  an  interesPng  behavior  in  Charpy  impacts.    For  high  ducPliPes,  the  specimen  can  deform  without  fully  breaking,  with  consequent  enormous  energies  absorbed.  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides  

Page 46: Microstructure*Proper-es.pajarito.materials.cmu.edu/rollett/27301/L15-fracture...1 27301’ Microstructure*Proper-es. Fracture’Toughness:’ maximize’viamicrostructure’ Profs.’A.’D.’RolleB,’M.’De’Graef’

46

References •  D.J.  Green  (1998).  An  IntroducPon  to  the  Mechanical  ProperPes  of  

Ceramics,  Cambridge  Univ.  Press,  NY.    •  Materials  Principles  &  PracPce,  BuBerworth  Heinemann,  Edited  by  C.  

Newey  &  G.  Weaver.  •  G.E.  Dieter  (1986),  Mechanical  Metallurgy,  McGrawHill,  3rd  Ed.  •  Courtney,  T.  H.  (2000).  Mechanical  Behavior  of  Materials.  Boston,  

McGraw-­‐Hill.  •  R.W.  Hertzberg  (1976),  DeformaPon  and  Fracture  Mechanics  of  

Engineering  Materials,  Wiley.  •  N.E.  Dowling  (1998),  Mechanical  Behavior  of  Materials,  PrenPce  Hall.  •  Y.-­‐T.  Chiang,  D.P.  Birnie  III,  W.D.  Kingery,  Physical  Ceramics  (1997),  Wiley,  

New  York,  ISBN  0-­‐471-­‐59873-­‐9.  •  A.H.  CoBrell  (1964),  The  Mechanical  ProperPes  of  MaBer,  Wiley,  NY.  •  For  gas  turbine  engines,  ASME  runs  a  yearly  conference  called  ASME  

Turbo  Expo,  which  has  sessions  that  discuss  materials  issues.  

Please  acknowledge  Carnegie  Mellon  if  you  make  public  use  of  these  slides