Top Banner
MicroPET: Radiotracer Imaging of Rodents and Non- Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging Core Town Hall - Thursday 2 February 2012
16

MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Dec 25, 2015

Download

Documents

Herbert Norton
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates

Alexander K. Converse, PhDUniversity of Wisconsin–Madison

Waisman Center - Brain Imaging CoreTown Hall - Thursday 2 February 2012

Page 2: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Radioactive Decay & Positron – Electron Annihilation

Page 3: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Positron Emission Tomography

Page 4: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

UW-Madison PET

Page 5: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Animal Brain PET Scanners

6 uL

3 uL

3 uL

2 uL + MR

Page 6: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Fig. 26 BLOOD VOLUME: Carbon monoxide imaging of hemoglobin in rat12

y = 5.05x - 4332y = 6.15x - 5423y = 6.00x - 5264

0

2000

4000

6000

8000

10000

0 1000 2000 3000Cb / CdPu

CdP

u /

CdP

u

AT57AT47AT97

A

y = 5.05x - 4332y = 6.15x - 5423y = 6.00x - 5264

0

2000

4000

6000

8000

10000

0 1000 2000 3000Cb / CdPu

CdP

u /

CdP

u

AT57AT47AT97

A

Fig. 25: QUANTIFICATION: Logan determination of binding of a dopamine

D2 tracer5

PHARMACOKINETIC MODELING

Fig. 24 DOPAMINE RELEASE: Time activity curves of a dopamine D2 receptor tracer in response to

amphetamine5

L R

0.4 mg/kg 0.0 mg/kgAT47

AT57

AT97

AU18

AU21

A B

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0.4 mg/kg 0.0 mg/kg

L R

0.4 mg/kg 0.0 mg/kgAT47

AT57

AT97

AU18

AU21

A B

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activit

y (uC

i/mL)

0.4 mg/kg 0.0 mg/kg

L R

0.4 mg/kg 0.0 mg/kgAT47

AT57

AT97

AU18

AU21

A B

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activity (

uCi/mL)

0.4 mg/kg 0.0 mg/kg

L R

0.4 mg/kg 0.0 mg/kgAT47

AT57

AT97

AU18

AU21

A B

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

6

0 2000 4000 6000time (s)

activity (

uCi/mL)

0

1

2

3

4

5

0 2000 4000 6000time (s)

activity (

uCi/mL)

0.4 mg/kg 0.0 mg/kg

Fig. 23. PARAMETER ESTIMATION: Time activity curves from a multiple injection study of a dopamine D2

receptor ligand in rhesus15

Page 7: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Fig. 19 ASTHMA: Glucose metabolism in inflammation in a rat lung10

Fig. 20 MULTIPLE SCLEROSIS: Microglial cell activation in white matter in

response to zymosan in rat11

INFLAMMATION

Page 8: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Fig. 21 OPIOID RECEPTORS: Kappa

opioid receptor availability in parrot

brain6

PAIN

Fig. 22 AVIAN VETERINARY

ANALGESIA: Increased glucose metabolism in

response to experimental arthritis in

parrot6

Page 9: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Fig. 15 STEM CELL THERAPY: Dopamine synthesis in a rhesus model pre- and post- unilateral

lesion13

Fig. 16 NEURODEGENERATION: Rat model of striatal

neurodegneration for pre- (left) and post- (right) stem cell treatment (first image from the microPET P4, 2002)

Fig. 18 L-DOPA: Recovery of AAAD activity in a rhesus model7

Fig. 17 GENE THERAPY: Dopamine synthesis pre- and post- lentiviral delivery of GDNF in a unilateral lesion rhesus model8

PARKINSON’S DISEASE

Page 10: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Fig. 7 CHILDHOOD ANXIETY: Dopamine D2 receptors in rhesus1

MOOD DISORDERS

Fig. 9 SEXUAL BEHAVIOR: Glucose metabolism in female marmosets

Fig. 8 CHILDHOOD ANXIETY: Glucose metabolism in rhesus9

Page 11: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Fig. 10 PRENATAL ALCOHOL EXPOSURE:

glucose metabolism alterations due to a

reversal task in rhesus3

Fig. 11 PRENATAL ALCOHOL EXPOSURE: Serotonin 1A receptors in

rhesus2

ADDICTIVE BEHAVIORS

Fig. 14: EATING BEHAVIORS Dopamine D2 receptor response to deep brain stimulation in

rhesus14

Fig. 12 PRENATAL ALCOHOL EXPOSURE: Image of dopamine transporter in rhesus and time activity curves4

Fig. 13 AMPHETAMINE: Blood flow alteration correlated with dopamine release in rhesus5

Page 12: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Radiotracers Used with the Waisman Center microPET

Page 13: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.
Page 14: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Design Logistics Radiochemistry Scanner Analysis

PET

Page 15: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.

Alex Converse

Director, MicroPET Imaging

Waisman Center Brain Imaging Core

[email protected]

Page 16: MicroPET: Radiotracer Imaging of Rodents and Non-Human Primates Alexander K. Converse, PhD University of Wisconsin–Madison Waisman Center - Brain Imaging.