Top Banner
6 April 2004 1 Kiel, 8 October 2004, jba Microfabrication of piezoelectric MEMS 1 st International Workshop on Smart Materials and Structures 7-8 October, 2004 Kiel, Germany Jacek BABOROWSKI RF & Piezoelectric Components Group CSEM SA, Neuchâtel, Switzerland [email protected]
58

MICROFABRICATION OF PIEZOELECTRIC MEMS...prototypes: acoustic sensor, ultrasonic transducer By understanding the basic principles of piezoelectric device physics By the development

Feb 07, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 6 April 2004 1Kiel, 8 October 2004, jba

    Microfabrication of piezoelectric MEMS

    1st International Workshop on Smart Materials and Structures 7-8 October, 2004Kiel, Germany

    Jacek BABOROWSKI

    RF & Piezoelectric Components GroupCSEM SA, Neuchâtel, [email protected]

    mailto:[email protected]

  • 6 April 2004 ISIF 2004 jb INVITED TALK2

    6 April 2004 ISIF 2004 jb INVITED TALK 2Kiel, 7. Oktober 2004, jba

    csemSwiss Center of Electronicsand Microtechnologie

    Microelectronics Division

    RF & PIEZO COMPONENTS GROUP

  • 6 April 2004 ISIF 2004 jb INVITED TALK3

    6 April 2004 ISIF 2004 jb INVITED TALK 3Kiel, 7. Oktober 2004, jba

    csemSwiss Center for Electronics and Microtechnology

    2003 :Turnover ~ 54 MCHF, employees ~ 290

    + SPINN-OFFS

    Privately owned company with ~ 70 Shareholders, none profit

    Long term contract with the Swiss Government for financing applied research

    Core technologies: Micro- and Nano-technologies and System Engineering

    41%

    14%

    45%

    Government Contract Public Projects Industrial Income

    RF & PIEZO COMPONENTS GROUPM.A.Dubois et al.

  • 6 April 2004 ISIF 2004 jb INVITED TALK4

    6 April 2004 ISIF 2004 jb INVITED TALK 4Kiel, 7. Oktober 2004, jba

    FACILITIES at EPFL

    CENTER OF MICRO- and NANOTECHNOLOGY

    CERAMIC LABORATORY(Prof. N.Setter Lab.)

  • 6 April 2004 ISIF 2004 jb INVITED TALK5

    6 April 2004 ISIF 2004 jb INVITED TALK 5Kiel, 7. Oktober 2004, jba

    From materials… to sensors…Reproducible and industrially exploitable microfabricationtechnology for piezoelectric MEMS based on PZT and AlN thin films

    By demonstrating the microfabrication of

    prototypes: acoustic sensor, ultrasonic

    transducer

    By understanding the basic principles

    of piezoelectric device physics

    By the development of dedicated

    micromachining method for AlN, PZT, Pt in

    combinaison with deep silicon etching of SOI

    substrates

    By integration of high performance piezoelectric

    films• {100} PZT 53/47, e31,f = -12 C/m2, {111} • AlN, e31,f = -1.02 C/m2 , d33,f = 5.3 pm/V .

  • 6 April 2004 ISIF 2004 jb INVITED TALK6

    6 April 2004 ISIF 2004 jb INVITED TALK 6Kiel, 7. Oktober 2004, jba

    Today's challenges in piezoelectric MEMS

    • Deposition and integration of high performance (e.g.high e31,f value)piezoelectric films on a wafer scale with thickness up to 10 µm.

    Dedicated microfabrication methods, process flow

    top electrode

    bottom electrode

    strain ε1

    Q3, E3

    x, 1

    y, 2z, 3

    External load or displacement

    piezoelectric thin film

    Si structure

    Microfabrication and characterization of demonstrators

    • Establishment of reliable microfabrication processes (mostly “dry” plasmaetching methods) to produce complex piezo MEMS with submicron resolution.

    • Demonstration of new applications

    Pb2+

    O2-

    Zr4+, Ti4+

    Integration, processing,properties

    N

    Alc

    a

  • 6 April 2004 ISIF 2004 jb INVITED TALK7

    6 April 2004 ISIF 2004 jb INVITED TALK 7Kiel, 7. Oktober 2004, jba

    Outline:

    Introduction1. Overview of piezoelectric devices2. General Processing Issues3. Examples

    • Vibrating membranes and thin plates (MUT, pressure sensors)

    • Cantilevers and Beams• RF MEMSOutlook and Conclusions

    Goal:• Present the existing devices• Comparison with our actual processing developments• Highlight the common problems and limitations

  • 6 April 2004 ISIF 2004 jb INVITED TALK8

    6 April 2004 ISIF 2004 jb INVITED TALK 8Kiel, 7. Oktober 2004, jba

    Overview of piezoelectric devicesPiezoelectric thin films in MEMSMicromachined flextensional actuators and transducers

    Plate waves, SAWFlexural plate waves in membranes (Lamb waves) (Uozumi, Ohsone, White, 1983, ZnO)Signal, particle filtering, chemical sensors, fluidic systems (Lugienbühl, 1997 PZT)Ultrasonic micromotors for watches, (Udayakumar 1991 PZT, Flynn et al 1992 PZT, Racine et al 1994 ZnO, Muralt et al 1995 PZT)

    Standing Waves• Micromachined Ultrasonic Transducers:

    Bernstein, Cross 1997, PZTPercin, Khuri-Yakub, 1998, ZnOBaborowski, Muralt, 2002, PZTAkasheh, 2004, PZT

    • Droplet Ejector Percin, 2001 ZnO• Intelligent can, Yamashita, 2002, PZT• Array microjet, Yuan, 2003, PZT• Microdegasing, Maeda 2001, bulk PZT.

    Linear actuatorsPiezoelectric laminated cantilevers, AFM, surgery tools, optical phase shifters, relays, microvalves, pumps, micromirrors, switches .

    Schiller and Polla (1991)Lee, Itoh, Suga (1996)Nippon Denso,Y. Ohtuka, (1995)Chengkuo Lee, et al, (1996~1997)J. Tsaur et al, AIST, Tsukuba, (2002) etc..

  • 6 April 2004 ISIF 2004 jb INVITED TALK9

    6 April 2004 ISIF 2004 jb INVITED TALK 9Kiel, 7. Oktober 2004, jba

    Plate and Standing wavesFlexural plate waves in membranes (Lamb waves) (Uozumi, Ohsone, White, 1983, ZnO)

  • 6 April 2004 ISIF 2004 jb INVITED TALK10

    6 April 2004 ISIF 2004 jb INVITED TALK 10Kiel, 7. Oktober 2004, jba

    … Flextensional ultrasonic transducers

  • 6 April 2004 ISIF 2004 jb INVITED TALK11

    6 April 2004 ISIF 2004 jb INVITED TALK 11Kiel, 7. Oktober 2004, jba

    … Flextensional ultrasonic transducers

    ZnO structure (0.3 µm) 100 µm diameter membrane

    G. Percin et al, Micromachined two-dimensional array piezoelectrically actuated transducers, APL 72 (1998)

  • 6 April 2004 ISIF 2004 jb INVITED TALK12

    6 April 2004 ISIF 2004 jb INVITED TALK 12Kiel, 7. Oktober 2004, jba

    … Flextensional ultrasonic transducers

    Cell size 30 - 80 micronsFrequency range: 3 – 12 MHzk2eff = 1.7 to 2.5 %

  • 6 April 2004 ISIF 2004 jb INVITED TALK13

    6 April 2004 ISIF 2004 jb INVITED TALK 13Kiel, 7. Oktober 2004, jba

    … Flextensional ultrasonic transducers Proximity Sensing

  • 6 April 2004 ISIF 2004 jb INVITED TALK14

    6 April 2004 ISIF 2004 jb INVITED TALK 14Kiel, 7. Oktober 2004, jba

    … Flextensional ultrasonic transducers Droplet Ejectors

    G. Perçin and B.T. Khuri-Yakub,Micromachined droplet ejector arrays for controlled ink-jet printing and deposition, Rev.Sci.Instr. 73 (2002) 2193-96

  • 6 April 2004 ISIF 2004 jb INVITED TALK15

    6 April 2004 ISIF 2004 jb INVITED TALK 15Kiel, 7. Oktober 2004, jba

    Resonator shape and method to excite torsional vibration system with 2 degrees of freedom

    Method to generate torqueDriving voltage characteristics

    Frequency characteristics Scanning images

    Piezoelectric In-Plane Scanning Mirror(Nippon Denso,Y. Ohtuka, 1995)

    LINEAR ACTUATORS - Micromirrors

  • 6 April 2004 ISIF 2004 jb INVITED TALK16

    6 April 2004 ISIF 2004 jb INVITED TALK 16Kiel, 7. Oktober 2004, jba

    MicromirrorsPiezoelectric In-Plane Scanning Mirror(AIST, Tsukuba, Japan, Chengkuo Lee, et al, 1996~1997)

    SiO2 substrate

    PZT layer

    a.a. b.b. Bimorph structure:Bimorph structure:• PZT +SiO2 (1.5µm)Actuation of 1 beam:Actuation of 1 beam:• Vin applied to the beam ---

    bendingActuation of 2 beams:Actuation of 2 beams:• 2 Vin with 180° phase shift--

    -1D rotation Actuation of 4 beams:Actuation of 4 beams:• additional 2 Vin with phase

    shift---2D rotation

    Upper electrode

    Lower electrode

    c.c.

    V+

    V-

    V+ V-

    Laser

    1 beam

    2 beams

    4 beams

    A. Schroth, C. Lee, S. Matsumoto, and R. Maeda," Application of Sol-gel Deposited Thin PZT Film for Actuation of 1D and 2D Scanners," Sensors & Actuators A, 73 (1999) 144-152.

  • 6 April 2004 ISIF 2004 jb INVITED TALK17

    6 April 2004 ISIF 2004 jb INVITED TALK 17Kiel, 7. Oktober 2004, jba

    MicromirrorsPiezoelectric In-Plane Scanning Mirror(AIST, Tsukuba, Japan, Chengkuo Lee, et al, 1996~1997)

    C.v1= -v3=2.5V at 13.6kHzv2= -v4=2.5V at 14.6kHz

    v4v1

    v3

    A.v1= -v3=2.5V at 13.6kHz

    B.v2= -v4=2.5V at 14.6kHz

    v2

    v4 v1

    v2 v3

    A. Schroth, C. Lee, S. Matsumoto, and R. Maeda," Application of Sol-gel Deposited Thin PZT Film for Actuation of 1D and 2D Scanners," Sensors & Actuators A, 73 (1999) 144-152.

  • 6 April 2004 ISIF 2004 jb INVITED TALK18

    6 April 2004 ISIF 2004 jb INVITED TALK 18Kiel, 7. Oktober 2004, jba

    Micromirrors

    ~ 1 micron/V

  • 6 April 2004 ISIF 2004 jb INVITED TALK19

    6 April 2004 ISIF 2004 jb INVITED TALK 19Kiel, 7. Oktober 2004, jba

    2D Scanning Mirror Using Bi-layer PZT FilmsJ. Tsaur et al, AIST, Tsukuba, Japan, 2D Micro Scanner Actuated by sol-gel derived double layered PZT, MEMS 2002

    Micromirrors

  • 6 April 2004 ISIF 2004 jb INVITED TALK20

    6 April 2004 ISIF 2004 jb INVITED TALK 20Kiel, 7. Oktober 2004, jba

    Cantilevers

  • 6 April 2004 ISIF 2004 jb INVITED TALK21

    6 April 2004 ISIF 2004 jb INVITED TALK 21Kiel, 7. Oktober 2004, jba

    Inertial systems

    60 mic PZT40 mic Si membrane

  • 6 April 2004 ISIF 2004 jb INVITED TALK22

    6 April 2004 ISIF 2004 jb INVITED TALK 22Kiel, 7. Oktober 2004, jba

    RF MEMS Piezoelectric RF-switch

    Piezoelectric (PZT) < 40 V 2 µs Gap 1 micron Penn State Univ.

    d33 mode generated by IDT electrodes

    d33= 120 pC/N

  • 6 April 2004 ISIF 2004 jb INVITED TALK23

    6 April 2004 ISIF 2004 jb INVITED TALK 23Kiel, 7. Oktober 2004, jba

    RF MEMS Piezoelectric RF-switch

    Tunable parallel-plate varactor < 6 V Q = 210 2.5 – 3.5 µm LG, Park et al.

    Park et al., LG Electronics, 2001

  • 6 April 2004 ISIF 2004 jb INVITED TALK24

    6 April 2004 ISIF 2004 jb INVITED TALK 24Kiel, 7. Oktober 2004, jba

    2. Microfabrication of piezoelectric MEMS based on deflecting structures

    Common tasks

    • Silicon micromachining• Photolithography, 1 µm resolution is sufficient (now 0.13 µm in IC's)• Thin films deposition and etching processes for standard

    SiO2, Si3N4, poly-Si and metal films.Madou (1997)

    IC's

    • Individual etching processes for PZT, AlN and its electrodes• Deep silicon etching (membrane definition, SOI substrate, …)• Surface micromachining (compatible sacrificial layers)• Stress compensation to obtain flat structures

    +

    Special tasks for pMEMSFor piezo MEMS, additionnal methods are required:

  • 6 April 2004 ISIF 2004 jb INVITED TALK25

    6 April 2004 ISIF 2004 jb INVITED TALK 25Kiel, 7. Oktober 2004, jba

    Piezoelectric multilayer, thin film structures

    J.Baborowski,Journal of Electroceramics, 2004

    Laminated PZT/Si deflecting structures used in piezoelectric MEMS:bridge, cantilever and suspended membrane.

    AlN PZT

    e31,f [C/m2] -1.33 -12

    d33,f [pm/V] 5.15 65

    ε33,f 10.2 1200

    tgδ 0.002 0.03

    Current resp. [C/m2] 1.33 12

    Voltage resp. [GV/m2] 13 1

    S/N [105 Pa0.5] 31.3 6.7

    k2 0.22 0.15

    Power efficiency 110 5

    Actuators

    Substrates: Si, SiO2/SiN membranes, SiC, diamond*)Electrodes: Pt/Ti, Mo, Al, Au/CrPiezoelectric layers: PZT, AlN, ZnO…

    *) Shibata, Sensor and Actuators, 2004

    Sensors

    σ1,2 = −e31, f ⋅ E3 , x3 = d33, f ⋅ E3

    D3 = e31, f ⋅(x1 + x2 )+ d33, f ⋅σ3

    e 31 , f =d 31

    s11E + s12

    E ≡ e31 −c13

    E

    c 33E e 33 e 31 , f > e 31

    d 33 , f =e 33c 33

    E ≡ d 33 −2 s13

    E

    s11E + s12

    E d31 < d 33

    P. Muralt, Integrated Ferroelectrics,1997

  • 6 April 2004 ISIF 2004 jb INVITED TALK26

    6 April 2004 ISIF 2004 jb INVITED TALK 26Kiel, 7. Oktober 2004, jba

    Film bulk acoustic resonator (FBAR)Bulk micromachining

    Surface micromachining

    AlN

    Si wafer

    electrodes

    BAW resonators are based on thelongitudinal thickness vibration mode of a piezoelectric thin film.

    Acoustic insulation of the resonant structure performed by air (or vacuum)

    + Large achievable coupling coefficient+ Processing time+ May be used in front end filters, or in

    VCO's for low power RF applications. + High Q factor (typically up to 1000)+ Resonance frequency: 2-10 GHz

    – Structures sensitive to material stress, prone to buckling (1-2 µm thickmembranes or bridges)

    – Fragile structures for manipulation, packaging, etc.

    – Use of IC wafers difficult in the case ofbulk micromachined resonators

    AlN

    Si wafer

    electrodes

  • 6 April 2004 ISIF 2004 jb INVITED TALK27

    6 April 2004 ISIF 2004 jb INVITED TALK 27Kiel, 7. Oktober 2004, jba

    Solidly mounted resonator (SMR)Acoustic insulation performed by a Bragg acoustic mirrorAlN

    Si wafer

    electrodes

    acoustic reflector

    f0 = 2.4 GHzStress compensated layers for a crack-free structureDense layers => low waveattenuationVery smooth interfaces => low wavediffraction

    The acoustic reflector is a stackof alternating λ/4 layers made of

    materials with very differentelastic properties.

    M.A.Dubois, CSEM

  • 6 April 2004 ISIF 2004 jb INVITED TALK28

    6 April 2004 ISIF 2004 jb INVITED TALK 28Kiel, 7. Oktober 2004, jba

    2. Microfabrication of piezoelectric MEMS based on deflecting structures

    DEPOSITION and growth controlPVD sputteringCSD (sol-gel)PLD

    PATTERNINGWet chemical etchingHDP etchingSurface micromachining (Piekarski, 2001)

    DIMENSIONAL CONTROLDefines miniaturization rulesDefines precision of elastic behavior and characteristics (resonance frequencies, coupling factor)Defines border conditions (accordance between simulation models and reality)

    STRESS CONTROLTensile stresses present in most of the layers (up to +800 MPa Pt/Ti)Compressive stresses in SiO2 wetox (-300MPa)Very sensible to deposition conditions (AlN) and poling (e.g. PZT +/-60MPa)Incertitude in stress level in SOI substratesStress adjustment

    (Lee,Itoh, 1996)

  • 6 April 2004 ISIF 2004 jb INVITED TALK29

    6 April 2004 ISIF 2004 jb INVITED TALK 29Kiel, 7. Oktober 2004, jba

    3) Optimized Sol-gel process PZT 53/47 (100) on PbTiO3 (PT) seeding layerThickness: about 0.25 µm / layer; total up to 4 µm

    -e31,f = 12 ± 0.3 C/m2

    Deposition and integration of {100}-textured sol-gel PZT films on silicon (Ceramics Lab., EPFL, 1996-2002)

    2) Elaboration of PZT precursors

    2 solutions with 10% and 30% Pb excess

    Budd (1985)

    1) Pt bottom electrode

    100 nm Pt/TiO2/Ti + 10 nm PbTiO3 {100} seeding layer

    Maeder (1998)Muralt (1998)Hiboux (1999)

    Seifert,, Ledermann (2001)Ledermann, Baborowski, Muralt (2002)

    0 100

    5 104

    1 105

    1.5 105

    2 105

    2.5 105

    20 25 30 35 40 45 50

    inte

    nsity

    (cou

    nts)

    angle 2Θ (deg)

    PZT

    (100

    )/(00

    1)

    PZT

    (110

    )

    PZT

    (111

    )P

    t (11

    1)

    PZT

    (200

    )/(00

    2)P(100) = 98%

    {100}

    Revealed lateral underetch:- Global (several microns),- In each crystalised layer during each

    RTA step (below 100nm),

    - Heterogeneity in each crystalisedlayer due to migration of Zr and Ti(Baborowski 2002, Cantoni 2003)

    TiZr Pb

    % at

    ZrTi

  • 6 April 2004 ISIF 2004 jb INVITED TALK30

    6 April 2004 ISIF 2004 jb INVITED TALK 30Kiel, 7. Oktober 2004, jba

    PVD DEPOSITIONSpider: a versatile sputtering equipment

    Cluster architecture: loadlock, wafer transfermodule, 4 process chambers

    Adapted for 100 or 150 mm wafers

    DC, pulsed DC, and RF power sources for metal andceramic films

    1 chamber designed andreserved for AlN thin films

  • 6 April 2004 ISIF 2004 jb INVITED TALK31

    6 April 2004 ISIF 2004 jb INVITED TALK 31Kiel, 7. Oktober 2004, jba

    Sputtering of AlN thin films

    Reactive sputtering from a pure Al targetin a nitrogen atmosphere

    Very smooth surfaceDense columnar microstructure~3% uniformity on 4" waferc-axis orientation (FWHM[002] = 1.58°), induced by the hexagonal plane of Pt (111)d33,f=3.7±0.3 pmV-1

    Single run for deposition of :Bottom electrode: Ti , PtPiezoelectric layer : AlNTop electrode Pt or AlSi

    M.A.Dubois, CSEM

    1.0E+00

    1.0E+01

    1.0E+02

    1.0E+03

    1.0E+04

    1.0E+05

    1.0E+06

    30 40 50 60 70 80 90

    2theta [°]

    inte

    nsity

    AlN

    (002

    )

    AlN

    (004

    )

    Si (

    200)

    Si (

    400)

    Pt (

    111)

    Pt (

    222)

  • 6 April 2004 ISIF 2004 jb INVITED TALK32

    6 April 2004 ISIF 2004 jb INVITED TALK 32Kiel, 7. Oktober 2004, jba

    Deposition and integration of AlN films on SOI substrates(CSEM 2004)

    Ti sputtering 10nm

    Pt sputtering 100nm

    AlN sputtering1500 nm

    pvacuum 7*10-8 mbar 3*10-7mbar

    5*10-3mbar

    300°C

    15 sccm Ar

    4 nm/sec

    DC 1000W

    5*10-8 mbar

    pwork 3*10-3mbar 4*10-3 mbar

    T 300°C 300°C

    gas 9 sccm Ar 50 sccm N2Deposition rate 1 nm/sec 0.72nm/s

    Field source DC 1000W Pulsed DC 1500W

    1. SiO2 compensation layer : 1500 nm thermal wet oxidation of Si followed by HFdip2. Ti adhesion layer : 10nm 3. Pt seed layer : 100nm 4. AlN piezoelectric layer : 1500 nm 5. Pt top-electrode : 100nm

    AlN

    30 40 50 60 70 80 902θ (degree)

    Cou

    nts(

    a.u)

    Ti (0002)

    Ti (0004)

    Pt (111)

    Pt (200)

    Pt (311)

    Pt (222)

    AlN(0002)

    AlN(0004)

    Oxygen presence in Ti layer

    AES profile of SOI_5_1through VIA of bottom-elec

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    0 5 10 15 20 25 30 35

    etch time [min]

    I [a.

    u.]

    Oxygen

    Titanium

    Platinum

    Platinum 100 nmTitanium 10 nm

  • 6 April 2004 ISIF 2004 jb INVITED TALK33

    6 April 2004 ISIF 2004 jb INVITED TALK 33Kiel, 7. Oktober 2004, jba

    PZT {100}, 1 µm thin film

    0

    2

    4

    6

    8

    10

    12

    14

    -200

    -100

    0

    100

    200

    300

    25 30 35 40 45 50 55 60 65

    Piezoelectric coeff.

    Film stress

    Pie

    zoel

    ectri

    c co

    effic

    iet-

    e 31,

    f(C

    /m2 )

    Composition [Zr]/([Zr]+[Ti])

    Poling:+ 64 MPa

    PZT 53/47

    STRESS COMPENSATED BEAMS/ MEMBRANES

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    0 500 1000 1500 2000

    after poling

    before poling

    z-de

    flect

    ion

    (µm

    )

    distance from the attachement (µm)

    Poling of PZT effect on residual stress :Deflection + 20 µm = + 60 MPaσδ = 3 MPa/µm

    Ledermann et al., Sensor and Actuators, 2003

    -300

    -200

    -100

    0

    100

    200

    300

    400

    0.00 0.50 1.00 1.50 2.00 2.50

    AlN thickness [µm]

    Res

    idua

    l stre

    ss [M

    Pa]

    Residual stresses in wetox SiO2

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    0 100 200 300 400 500 600 700 800 900 1000

    Thickness of SiO2 (nm)

    σ (M

    Pa)

    0°90°

    Residual stresses as a function of film thickness in:

    SiO2 wetox AlN

  • 6 April 2004 ISIF 2004 jb INVITED TALK34

    6 April 2004 ISIF 2004 jb INVITED TALK 34Kiel, 7. Oktober 2004, jba

    STRESS COMPENSATED BEAMS/ MEMBRANES

    Mechanical system at equilibrium Equilibration of the structure

    z

    -ts

    hSiO2hTi/PthAlN

    hPttPt tAlN tTi/Pt

    tSiO2

    -tb0

    0=RM0)()( =∆−+∆−= ∑i iiisssu

    R tTcEtTcEF αα

    ( )0

    )(

    1

    0

    =−

    +−

    = ∑ ∫∫−− i

    h

    h

    bi

    t

    bsbR

    i

    is

    dzr

    tzEdz

    rtz

    ( ) ∑ ∫∫−

    −+−=− i

    h

    hbi

    tbSR

    i

    is

    dztzdztzM1

    )(0

    σσ

    (1)

    (2)

    (3)

    Membrane definition

    ρ [103 Kg/m3] E [GPa] α [ppm] Tf [K] ν

    Si 2.33 180 2.8 + 0.003*T --- 0.278

    SiO2 2.2 70.4 0.058 --- 0.3

    Ti 4.5 100 8.6 1941 0.33

    Pt 21.45 136 8.8 2041 0.42

    AlN 3.26 310 4.2 3273 0.24

    Materials constants

    Setting (3) to zero and resolving (1),(2),(3)

    Determination of the wetox SiO2 layer thickness for deflection-free membrane

    Determination of residual stress

  • 6 April 2004 ISIF 2004 jb INVITED TALK35

    6 April 2004 ISIF 2004 jb INVITED TALK 35Kiel, 7. Oktober 2004, jba

    PZT

    Pt /Ti

    SiO2 burried SiO2 wetSi bulk

    Au/Cr

    σres =E

    1 − υ⋅

    ts2

    3L2t f⋅ d ts = substrate thickness (10 µm) tf = thin films thickness (1 µm)d = cantilever tip deflection (µm), L = cantilever length (2 mm)

    E, ν = Young modulus and Poisson’s coefficient of Silicon

    0.12 µm (PVD) Pt/TiO2 = + 839 ± 72 MPa1.00 µm (sol-gel) PZT = + 113 ± 8 MPa (unpoled)1.00 µm (250 kV/cm, 150°C, 10’) PZT = + 64 ± 5 MPa (poling)0.2 µm (evaporation) Au/Cr = + 282 ± 11 MPaX ? (wetox) SiO2 = - 297 ± 3 MPa

    E.g. for 2 µm PZT XSiO2 = 1200 ± 40 nm or ± 12MPa

    STRESS COMPENSATED BEAMS/ MEMBRANESEXAMPLE of sol – gel PZT / Si

    For SOI substrates the stress of buried oxide is not well known

  • 6 April 2004 ISIF 2004 jb INVITED TALK36

    6 April 2004 ISIF 2004 jb INVITED TALK 36Kiel, 7. Oktober 2004, jba

    STRESS COMPENSATED BEAMS/ MEMBRANES

    PZT on 5 µm SOI

    Bending B1003-26

    192123252729313335

    0.5 1 1.5 2distance [mm]

    heig

    ht [ µ

    m]

    cross 1cross 2

    ~10 - 20 µm

    AlN on 5 and 10 µm SOI

    1 x 1mm25 µm thick

    0.3 mm2 to 1 mm2 SQUARE MEMBRANE :

    2 - 4 micron of PZT

    5 micron of Si

    Well stress compensatedEven if the stress value of buried oxide is uknown

    Bending B1002-27

    -2

    -1

    0

    1

    2

    3

    4

    0.5 0.7 0.9 1.1 1.3 1.5 1.7

    distance [mm]

    heig

    ht [ µ

    m] less than 1 µm

    1 x 1mm210 µm thick

  • 6 April 2004 ISIF 2004 jb INVITED TALK37

    6 April 2004 ISIF 2004 jb INVITED TALK 37Kiel, 7. Oktober 2004, jba

    PZT

    Pt /Ti

    SiO2 burried SiO2 wetSi bulk

    SiO2 PECVD

    Au/Cr

    MICROFABRICATION: PROCESSING WITH SOI WAFERS (Ceramics Lab., EPFL, 1999-2002)

    AlAlNPtAir gapSi

    Bridge of suspended membraneBridge of suspended membrane

    PlasmaEtch (ICP, Cl2, Ar)

    Wet etch (HCl:HF)

    PlasmaEtch (ICP, Cl2, Ar)

    Deep Reactive Ion Etching(Plasma Etch, ICP, RT, SiF6, C4 F8 )

    Carazzetti et al.,EPFL 2002

    Baborowski et al.,EPFL 2001

  • 6 April 2004 ISIF 2004 jb INVITED TALK38

    6 April 2004 ISIF 2004 jb INVITED TALK 38Kiel, 7. Oktober 2004, jba

    Reactive Ion Beam Etching of PZT and Pt thin films

    PZT : RIBE, CCl4/CF4/Ar, low bias70 nm/min, SPR = 0.5, SPt = 1.6

    Pt : RIBE (CCl4) or RIE/ICP (Cl2)60 nm/min, SPR = 0.5

    Major problem with PZT, platinum thin films dry etching:

    • limited volatility of reactive etch by-products, need energy !!• the processes are more physical than chemical,• low selectivity with respect to PR.

    Baborowski, Ledermann, Muralt (1999, 2000)

    ECR/RF Reactive Ion Beam Etching

    ECR ion gun

    ions

    gaz inlet RF, 2.45 GHz

    wafer

    water cooledsubstrate holder 12.56 MHzRF bias

    pumping2 µm

    PtPZT

    + PZT

  • 6 April 2004 ISIF 2004 jb INVITED TALK39

    6 April 2004 ISIF 2004 jb INVITED TALK 39Kiel, 7. Oktober 2004, jba

    Advanced patterning for fundamental studies on ferroelectrics

    ECRPlasma

    RF chuck

    grids

    gasAr, CCl4, CF4

    100 mm

    2.45 GHz

    RF 13.56 MHzWater cooled

    STOPZTPMMA

    E-beam

    -20 -10 0 10 20-800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    Am

    plitu

    de o

    f pie

    zore

    spon

    se (a

    .u.)

    DC bias to tip (V)

    S.Bühlman, J.Baborowski, P.Muralt, 2002S.Bühlman PhD Thesis EPFL, 2004

  • 6 April 2004 ISIF 2004 jb INVITED TALK40

    6 April 2004 ISIF 2004 jb INVITED TALK 40Kiel, 7. Oktober 2004, jba

    PATTERNING OF GROOVES and SLIT OPENINGS THROUGH PZT/Pt/SiO2/Si(e.g.unclamped membranes, cantilevers)

    STANDARD: Photolithography & Dry etch:

    • Standard photolithogaphy• 100 nm Pt etch (ICP STS)• 1200 nm wetox SiO2 etch (Alcatel, 300 sec) • up to 50 µm Si (SOI) (Alcatel601E) – ETCH STOP on

    SiO2buried

    PZT

    Pt /Ti

    SiO2 burried SiO2 wetSi bulk

    SiO2 PVD

    Au/Cr

    MICROFABRICATION: PROCESSING WITH SOI WAFERS (Ceramics Lab., EPFL, 1999-2002)

    PtSiO2

    Si

    SiO2 burried

    Below 5 micron ?

  • 6 April 2004 ISIF 2004 jb INVITED TALK41

    6 April 2004 ISIF 2004 jb INVITED TALK 41Kiel, 7. Oktober 2004, jba

    PATTERNING OF SUBMICRON SLIT OPENINGS THROUGH AlN/Pt/SiO2/Si(e.g.limited air conductivity in pressure sensors with minimum roughness of sidewalls)

    HIGH DEFINITION: Direct Laser Writing & HDP Dry etchHMDS & Shipley 1805, 1.75 µm, 90°C

    Direct writing DWL: 4.04.W Development : Standard Rite Track 1818 SerieEtching:

    Pt: STS; Pt_etch (150W bias), 380sec. (photoresist removed)SiO2: Alcatel 601E; SiO2 stand; DFA, 150 secSi: Alcatel 601E; Si_ambiant_2 (optimized for smalll openings); 360

    secFinal clean (solvant & SDR), plasma O2 ashing

    AlN or PZT

    Pt /Ti

    SiO2 burried SiO2 wetSi bulk

    SiO2 PVD

    Au/Cr

    MICROFABRICATION: PROCESSING WITH SOI WAFERS (Ceramics Lab., EPFL, 1999-2002)

    724 nm

    Bow < 50 nm

    947 nm

    100nm Pt/Ti

    1200 nm SiO2

  • 6 April 2004 ISIF 2004 jb INVITED TALK42

    6 April 2004 ISIF 2004 jb INVITED TALK 42Kiel, 7. Oktober 2004, jba

    Definition of membrane thickness (Ceramics Lab., EPFL, 1999-2004)Standard vs. SOI wafers

    Backside view;2µm large slit traversing the 10 µm thick membrane

  • 6 April 2004 ISIF 2004 jb INVITED TALK43

    6 April 2004 ISIF 2004 jb INVITED TALK 43Kiel, 7. Oktober 2004, jba

    4. EXAMPLES (2001-2004)

    Suspended Membranes:

    3.1. MICROMACHINED ULTRASONIC TRANSDUCERS (PZT)3.2. MICROPHONES FOR PHOTOACOUSTIC SENSING (PZT, AlN)

    RF filters and resonators based on AlN thin films

    RF Switch

  • 6 April 2004 ISIF 2004 jb INVITED TALK44

    6 April 2004 ISIF 2004 jb INVITED TALK 44Kiel, 7. Oktober 2004, jba

    3.1. MICROMACHINED ULTRASONIC TRANSDUCERS

    Micromachined ultrasonic transducers (MUT) are investigated for phased arrays in high frequency acoustic imaging

    The basic element consists of a micromachined membrane that is driven by piezoelectric actuation (pMUT)

    We deal with piezoelectric MUT’s using Pb(ZrxTi1-x)O3 (PZT) thin films of 2 µm thickness deposited by sol-gel on 5 micron Si membranes .

    We have studied:MUT fundamentals, thin film properties and processing, fabrication and characterization of single elements,FEA simulations, experimental characterization of single transducers and linear arrays in air and liquid

    ParmenideEU project

  • 6 April 2004 ISIF 2004 jb INVITED TALK45

    6 April 2004 ISIF 2004 jb INVITED TALK 45Kiel, 7. Oktober 2004, jba

    3.1. MICROMACHINED ULTRASONIC TRANSDUCERSFabricated devices: 2 micron PZT on 5 micron Si SOI substrate

    Frequency range (air loaded):

    50 to 150 kHz

    400 to 600 kHz

    750 to 1200 kHz

    Membrane size:

    1000 µm

    450 µm

    300 µm

  • 6 April 2004 ISIF 2004 jb INVITED TALK46

    6 April 2004 ISIF 2004 jb INVITED TALK 46Kiel, 7. Oktober 2004, jba

    Single element:Comparison between the simulation and measurements

    Basic Mode@ 55,2 kHz

    Second Mode@ 106 kHz

    Simulated by D.Schmidt (IBMT, Fraunhofer Institut)

    Measured with a stroboscopic interferometric microscope (A. Bosseboef CNRS, Orsay)

    LCLC

    EPFLEPFL

  • 6 April 2004 ISIF 2004 jb INVITED TALK47

    6 April 2004 ISIF 2004 jb INVITED TALK 47Kiel, 7. Oktober 2004, jba

    Suspended disc 1 mm2BASIC Mode 1 - Vertical deflection @ 55,2 kHz, 0.5 V AC , 50kV/cm DC bias

    A

    A

    B B

    C

    C

    Deflection of res ≈ 60 kHz

    distance x (µm)-1000

    -800

    -600

    -400

    -200

    0

    200

    0 800 1500

    device #13, RND GR - wafer 01

    coupe A-Acoupe B-Bcoupe C-C

    Def

    lect

    ion

    Z (n

    m) -1.3µm

    /V

    • Observed

    • Simulated

    -2000

    -1500

    -1000

    -500

    0

    500

    0 200 400 600 800 1000

    Deflection vs. distance - simulation

    Def

    lect

    ion

    z (m

    icro

    n)

    Distance x (micron)

    1.7 mic/V

    The shape is close to the desired piston movement. The displacement is uniform around 360°.

  • 6 April 2004 ISIF 2004 jb INVITED TALK48

    6 April 2004 ISIF 2004 jb INVITED TALK 48Kiel, 7. Oktober 2004, jba

    HIGHEST COUPLING COEFFICIENT FOR HIGH FREQUENCY TRANSDUCERS…

    -0.002

    -0.001

    0

    0.001

    0.002

    0.003

    0.004

    7.2 105 7.3 105 7.4 105 7.5 105 7.6 105 7.7 105 7.8 105 7.9 105

    a1-df-res1-20dc

    real measimag meas

    real fit

    imag fitA

    dmitt

    ance

    Frequency (Hz)

    k2 = 5.3 %k = 23 %Q = 135C

    0 = 90 pF

    Cpara

    =0

    SOI wafer: 3.5 µm of SiPZT (001) 2 µm

    f res = 753 kHz

    k2 = 5.3 %Q =135

    k=23%

    DC bias = 100kV/cm

  • 6 April 2004 ISIF 2004 jb INVITED TALK49

    6 April 2004 ISIF 2004 jb INVITED TALK 49Kiel, 7. Oktober 2004, jba

    LOW FREQUENCY SINGLE DEVICESin Air and in FLUORINERT TM (3M)

    /22Q/5

    k2=const

    AIR:

    fres = 97.5 kHz

    k2 = 1.0%

    Q = 75

    Fluorinert:

    fres = 19 kHz

    k2 = 1.0%

    Q= 16

    k2 = constQ / 5

  • 6 April 2004 ISIF 2004 jb INVITED TALK50

    6 April 2004 ISIF 2004 jb INVITED TALK 50Kiel, 7. Oktober 2004, jba

    APPLICATIONSPresence and precise positioning sensor; transmission

    Paper

    Plastic

    Receiver

    Emitter

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    0 200 400 600 800 1000

    Air transmission, distance = 10 mm

    actuator DISC F 1.1

    sensor DISC F 3.1

    actu

    ator

    vol

    tage

    (V) sensor voltage (V

    )

    time (µs)

    Charge amplifier: 10 pCExcitation frequency = 98 kHz, 10 V AC, 5 V offset

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0 200 400 600 800 1000

    Air transmission, distance = 10 mm

    emitter DISC F 1.1

    receiver DISC F 3.1

    emitt

    er v

    olta

    ge (V

    ) receiver voltage (V)

    time (µs)

    Liquid

  • 6 April 2004 ISIF 2004 jb INVITED TALK51

    6 April 2004 ISIF 2004 jb INVITED TALK 51Kiel, 7. Oktober 2004, jba

    3.2 Piezoelectric microphones for photoacoustic detection

    Specificity of the applicationLow frequency operation up to100HzLow acoustic pressure level order of mPa

    Key pointsBuild a MEMS device based on partially unclamped, deflecting piezoelectric structuresBridge or cantilever structures have been focusedUse of PZT or AlN as piezoelectric layerUse of SOI wafers perfectly well defined Si membranePatterning of very narrow slits advanced ICP dry etchPossibility to build arrays of devices for complementary propertiesIntegration of both amplification unit and device on same PCB

    3mm

    B B

    A

    A1,2 mm

    1,2,3 µm slit

    1,2,3 µm slitPt Top electrode

    Pt Bottom electrode

    1,2 mm

    AlN

  • 6 April 2004 ISIF 2004 jb INVITED TALK52

    6 April 2004 ISIF 2004 jb INVITED TALK 52Kiel, 7. Oktober 2004, jba

    3.2. Acoustic sensors based on PZT sol-gel filmsThe cantilever concept for an audio microphone/microspeaker was proposed by White & al in 1998. (J. Micromech. Microeng. 8 (1998) 230-238)4.5 µm thick cantilever ZnO/SiN/SiO2: 10 µm slit, response at 100 Hz = 38 mV/Pa

    2x2 mm beam

    2x2.5 mm beam2x2 mm bridge

    Electrode for pyroeffect compensation(static). via

    Cantilever top electrode

    Slit 5 and 10 µm

    1 micron thick PZT on 10 micron Si membrane;Ledermann et al., 2002

  • 6 April 2004 ISIF 2004 jb INVITED TALK53

    6 April 2004 ISIF 2004 jb INVITED TALK 53Kiel, 7. Oktober 2004, jba

    3.2. Acoustic sensors based on PZT sol-gel filmsN.Ledermann, J.Baborowski et al., JMM, 2004

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 10 20 30 40 50

    Bridge B3-10 - w.1202

    V = 4 cm3

    V = 2 cm3

    V = 1 cm3

    V = 0.5 cm3

    sens

    itivi

    ty (m

    V/Pa

    )

    frequency (Hz)

    0

    50

    100

    150

    200

    0 10 20 30 40 50

    Cantilever C5-3 - w.1202

    Sens

    itivi

    ty (m

    V/P

    a)

    frequency (Hz)

    V = 1 cm3

    V = 4 cm3

    V = 0.5 cm3

    V = 2 cm3

    S0, theo = 1.72 pC/Pa or 172 mV/PaS0, B3-10 = 68.3 mV/Pa ≈ 39 % S0, theo

    S0, theo = 3.21 pC/Pa or 321 mV/PaS0, C5-3 = 226 mV/Pa ≈ 70 % S0, theo

  • 6 April 2004 ISIF 2004 jb INVITED TALK54

    6 April 2004 ISIF 2004 jb INVITED TALK 54Kiel, 7. Oktober 2004, jba

    3.2. Acoustic sensors based on AlN filmsAdvantages of AlN based sensors:

    Full IC compatibleReduced Thermal BudgetNo poling requiredGood selectivity for micromachiningLow losses

    Future integration SoC (System on Chip) possible

    Ground

    Phase

    Cantilever – backside view

    Si SOI membrane

    2 µm slit

    1.5x1 mm CANTILEVER

    0.0E+00

    5.0E-08

    1.0E-07

    1.5E-07

    2.0E-07

    2.5E-07

    3.0E-07

    3.5E-07

    4.0E-07

    4.5E-07

    6'000 6'500 7'000 7'500 8'000 8'500 9'000

    Frequency [Hz]

    Re[

    Y]

    AlN on membrane

    Etched AlN forslit opening

    J.BABOROWSKI, CSEM 2004

  • 6 April 2004 ISIF 2004 jb INVITED TALK55

    6 April 2004 ISIF 2004 jb INVITED TALK 55Kiel, 7. Oktober 2004, jba

    Ta5Si3 200 nmSiO2 150 nm

    Si3N4 200 nmSiO2 650 nm

    Pt 100 nm

    Cross-section

    Frontside view

    Backside view

    2 mm

    Microhotplate as processing device for local thin film growth

    PZT

    Ta5Si3

    SiO2Pt

    SiO2Si3N4

    After PZT crystallization

    Diploma work of F. Calame; with J. Baborowski

  • 6 April 2004 ISIF 2004 jb INVITED TALK56

    6 April 2004 ISIF 2004 jb INVITED TALK 56Kiel, 7. Oktober 2004, jba

    RF MEMS for wireless communication andAmbient Intelligence (EC IP Mimosa)

    CSEM involved in:

    BAW resonatorsFiltersRF PIEZOELECTRIC Switch

  • 6 April 2004 ISIF 2004 jb INVITED TALK57

    6 April 2004 ISIF 2004 jb INVITED TALK 57Kiel, 7. Oktober 2004, jba

    ConclusionsPiezoelectric Micro-Electro-Mechanical Systems (pMEMS) are efficient for monitoring of pressure, vibration and positioning and for RF applications.Technology for thin PZT / SOI MEMS and AlN / SOI MEMS demonstrated and actuators & sensors has been fabricated with accordance to simulations and designActuators, vibrating membranes, deflecting systems, sensing devices in large range of frequency (few Hz to few GHz) can be fabricated in mass quantity with high yield (the use of silicon on insulator wafers in combination with deep silicon dry etching ICP)Stress control of the multilayer thin film structures is key factor for achieving high and uniform response.Submicron patterning of complex piezoelectric structures achieved.

    OPEN QUESTIONS:• Yield and reproducibility in fabrication of piezoelectric layers

    (PZT, AlN)• Post processing (poling) and Packaging = Price• Reliability and life time• Low cost mass production facilities• Special facilities• Competitive new applications

  • 6 April 2004 ISIF 2004 jb INVITED TALK58

    6 April 2004 ISIF 2004 jb INVITED TALK 58Kiel, 7. Oktober 2004, jba

    ACKNOWLEDGEMENTS

    TEAMS of Ceramic Lab, EPFL, Center of Micro- Nanotechnology, EPFLCenter of Microscopy, EPFLLMARC, Besancon, France,CSEM, NeuchatelHachUltra Analytics, Geneva

    OFES and EU Commission

    Thank you for your kind attentionAnd for investing your time

    Microfabrication of piezoelectric MEMScsemSwiss Center of Electronics and MicrotechnologieMicroelectronics DivisionRF & PIEZO COMPONENTS GROUPcsem Swiss Center for Electronics and MicrotechnologyFACILITIES at EPFLFrom materials… to sensors…Reproducible and industrially exploitable microfabricationtechnology for piezoelectric MEMS basedToday's challenges in piezoelectric MEMSOverview of piezoelectric devices Piezoelectric thin films in MEMS Micromachined flextensional actuators and transducersPlate and Standing waves