Top Banner
Exercise 1-1 Ex: 1.1 when output terminals aΙe open circuited For circuit a. υoc : υ,(ι) Foi circuit b. uoc : i,(r) X R, when output terminals a.e shoΙt-circuited ν.ι,) ror cιrcuιt a. ,,. : τ For circuiι b. i,. : is(/) For φυiνalency Rsis(r) : vs(r) z- = 10mVX :9-9mV " 100 + 1 Ιf R.: 19 ,^: lomνx l0 -9l.v " 1ο+l _ ΙfR, = 1L11 .,-: lomνx--!--:5.γ " l+l Ιf R. = 1φρ υ^:lomVx -οqtν " !α)+1K- 8o9o ofsource νoltaρe = lo mv x !Q _ ε mv ' lα) Ιf& gives 8 mv when Rs = l kΩ,then 8 = 10X_jr_=ρ, : aιο Ι +i, Ex: 1.4 Using current divider {ι" is : l0μΑ RL R. Rs + Rr- Giνen is : 10 μA, R5 : kf) For Rr- lkΩ.iο- lOμA X _-]ω :9.9μΑ ' l(n+l For R, _ ιo kΩ. i- : 10 uA x l00 ' lω+]0 a 9.l μA For R, _ tωkΩ.r- - ιοιΑx lΦ,,:5μA ' l(n I lοo Foι R,: lMΩ.i-_ l0uAX lωK ' lωΚ+ιM 3 0.9 μA 80% of source cuπent = 10 X g : 8 μΑ ιω Ιf a load R1 gives 80% of the soυtce cυ.Γent, then 8 ιr.Α : l0,',η x lω+R, :+R. : 25 Rs δ-Γ IΙ" b Fiμre 1.1b Γ-Ψl), Φ l" R, 1'.(ι' : υs(ι) " R' Τπ Giνen ,s(r) : Ι0 mv and Rs = 1 Ιf n.: un -rfl b Figure 1.1a ,: G) Εx| 1.2 Vr. : 10 mV i56 = 10 μΑ n: V :10mv - t kΩ l l0 μΑ Ex: 1.3 Using volιage diνider Rs ηc) + νo )
130

Microelectronic Circuits Example Solutions

Sep 17, 2015

Download

Documents

Colin Chan

A solution manual for examples from chapters particularly in chapter examples. The information in this is particularly
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Exercise 1-1

    Ex: 1.1 when output terminals ae open circuitedFor circuit a. oc : ,()Foi circuit b. uoc : i,(r) X R,when output terminals a.e shot-circuited

    .,)ror crcut a. ,,. : For circui b. i,. : is(/)For ialencyRsis(r) : vs(r)

    z- = 10mVX I :9-9mV" 100 + 1f R.: 19 1,^: lomx l0 -9l.v" 1+l _fR, = 1L11

    .,-: lomx--!--:5." l+lf R. = 1

    ^:lomVx | -qt" !)+1K-8o9o ofsource oltae = lo mv x !Q _ mv' l)f& gives 8 mv when Rs = l k,then

    8 = 10X_jr_=, : a +i,

    Ex: 1.4 Using current divider

    {"is : l0 RL

    R.Rs + Rr-

    Gien is : 10 A, R5 : l kf)For

    Rr- lk.i- lOA X _-] :9.9' l(n+lFor R, _ o k. i- : 10 uA x l00' l+]0a 9.l AFor

    R, _ tk.r- - x l,,:5A' l(n I loFo

    R,: lM.i-_ l0uAX lK' l+M3 0.9 A80% of source cuent = 10 X g : 8 f a load R1 gives 80% of the sotce c.ent, then

    8 r. : l0,', x ll+R,:+R. : 25 1

    Rs

    -I"b

    Fire 1.1b

    -l), l"

    R,1'.(' : s()

    " R' Gien ,s(r) : 0 mv and Rs = 1 kf n.: 1 un

    -rflb

    Figure 1.1a

    ,: G)

    x| 1.2

    Vr. : 10 mVi56 = 10

    n: V :10mv - t kl l0

    Ex: 1.3 Using volage diider

    Rs

    c)

    +

    o)

  • Xercise |_2

    Ex:1.5 / = +: #: 10Hzl : 2zf : 2 101 radls

    Ex: 1.6 (a) r

    (b):l=t

    161 7 = 1 =

    Ex: 1.7 f 6 Mz is allocated for each channel'then 470 MHz to 806 Mz will accomodate806 470 : 56 channels

    6

    since i Stats with channel 14, i will go fomchannel 14 to channel 69

    / : 1v}D = 001U^:2v, = 0, : 15 vD : 1ll1(b) (i) + l v (ii) +2 v (iii) +4 v (i) +8 v(c) The closest discrete value represented by, is 5 v: hus D : ol1. The eor is -0.2 v or_0.a 5'2 1o0 : _4L

    Ex: 1.10 Volage gain : 20log 1 : 40 dBcuent gain : 20 log l0oo : 60 dBower gain = 1log,: l0log(,,)

    : l0 1og 05 = 50 dB

    Ex:1.11 Pr. : 15x8: l20m

    PL:6/J' = 18mw

    Pl"*ipun",l : l20- l8 : l02mW

    , = ar lrn - _!g l ' - lla' P,' l20Ex:1.12

    ,,, = l' _-l0 l'v - tovI0" + 0

    P, : ,?o / R, - (lo x-10 6)'? : to Ir w

    with he buffer ampifier:

    n^= x R, xA x RL" R,+Rl ','' R+R":lx l xtx l0 = o.25l+l l0+1

    2rp' : o :9J = ls-w'R.t0

    volae ain _ b _ 0'25v - o.25 /,r lv= -12d8

    P,Power gain (r) = 7iwhere P: 6.25 mw and P, = 'i' 'v,:0.5Vand

    r. : -----l-v : 0.5 uA' iM+ lMThus.

    Pi = .5 x 0.5 : 0.25 Wand.

    1:6.25x10'=25xto1u 25xrool0 log ,', : 44 dB

    :1fI----:;

    l 'I

    106

    T

    1[t'.,TJ R

    : 1* : 16.7 .,.60

    : l00O s

    E:l.E P :

    t v2. ^ v2=-x-x, : -TRRlteraively,P = Pt+ Pr + Pr +...

    -/ 4v\,1,( 4v L, r 4v ),1*\il R - ]J2"J R' 52"., _ {ra y(*!- l -! r ..)R?r\92549t

    t can be shown by direct caculation that theinnnie series in the parenheses has a sum tha

    approaches 2 / 8; ths P becomes y2 / R asfound from direct caclation.F.action of energy in fundamental

    = 8/'z : 0.81Fracin of energy in first five hamonics

    :!(r*]+1)=.srort 9 25t

    Fracion of energy in firs seen harmonics

    :8(r*l+.1 +1): o.ss,rr\ g 25 49)

    Fracion of energy in Rrst nine harmonics

    s-8ll + .l *a*1*1): .s",r\ 9 25 49 8

    /

    Noe ha g07 of he energy of he square ae isin the first three harmonics: ha is' in he funda-mental and the third harmonic.

    Er: 1.9 (a) D can represent I5 distinct aluesbetween O and +15 V Thus./ : ovD: o0

  • Exercise I -3

    This fie belongs to Exercise 1.15

    Ei: 1.13 opn_circuit (no load) ouut olage :

    outp oltage with load connectedR.

    = ] -------L"o'R+Ro

    0.8: I aR-: o.25k = 25olRo+ I

    Ex:1.14 ,o : 40 dB = 1 Vr'

    P, : !eR, : (o,,"",ffi)", r,

    -,| "[l'-!-|'/ lo = 2.5vj' \ l+ll22

    nUi-|t- | l'oo n.7

    A,=+ - '''l', = 2.s x to4 w\ry10 'i

    l 0 log ,4" : ,4 dB

    Ex: 1.15 without stage 3 (see figure aboe)

    b_( r lo,/ |K ). \lK.lM/ '\lK,lK/

    '('*(-t)

    'o = 1.o11lo11o.99ol )(1)(.o9) : 8l.s v,J

    Ex:1.16 Gien ," : l mv

    1 : o.r, rozr, = 0.909 vs = 0.909X1 = 0.909 mV

    oiz _ iz ""-jl: s.s X o.9o9

    : 9v/v V' v".For,:1mVb:9xr:9x1:9mV

    ' . '' '- _ -x !!x!! _ go.g9.gyo'9o, oi, i' s:818 V/VFor ,, : 1mV.:8l8":8l8X1=818mV. '1. 1). '-- lt_' 12_- ll7]. ' ' '' ."l]7 1l

    :.909 X 90.9 9.9 x o.9 =

    7MForY":lmVv. :744 x l mV: 7,t4 mVL

    Ex: 1.17 Using voltage amplifier model, it can represent aE

    R"

    R;:lMR" = l0- : A^ x Ai : 9.9 90.9 __ 900 v/vThe oveall oltage gain

    V^ R, R,-- : -------Lx A l -------_v R, + R{ '"' RL+ R"For R : 0oerall oltage gain

    : lM X 9(nX 10 :4N1M+lK 0+10For:16oerall voltage gain

    = M XgX l0 : 8l0V/V1M+1K 1000+l0.'. Range of olage gain iS from 409 to 81 0 v/v

  • Exercise l-4

    Ex: l.l8 Ex: l-21

    6 : i6ro* ( + l)'rR":r[r"+(+)ft"]

    But r, = ,. and i, : i.,thus

    fl"=--=?=,-+(+)R"

    1.22 Gain

    10 z 60 dB10 kz dlkHz 20 dBl MHz dB

    R",.: i.----:-' "R+ R,

    i^= A i, Ro = tr.;" Rt R'" '"Ro_R' ""Rs+R,Rol RThs.

    io,R"Ro'"-Rr+R,Rr+R.Er:1.19

    &

    , "R,+R,l' : G^'(Ro || Rr)

    R, ,.=c.UsR(Ro|| R)

    Thus.

    ,k : c.ufu'o11 r.l

    Ex: l.20 Using transresistance cicuit model hecirci will be

    3dBfreqency

    v o : G.v iiRo ll R. ll c.l: G.V,a+a+,c,RoR''

    'rr. 9 : G' Iy, lLll' JCRo R.' '_LJ

    Ro Rhich is of he STc L yp.

    Dc ain : G- - l)- l*lRo R,

    !: R,i5 Ri+RJ

    V: R.i1"#*vo ^ R

    _ "'R,rR,

    ro.,9: "! =,s i .lsR" R.:R -----i-"'R( + R, R, + Ra

    +

    R, R"R"X"-R, +Rn R,+Rs

    ( +l) ib

    Ex:1.23

  • Exercise 1-5

    ui.ul=*: #: o.rmA/v1=o.t -$ : o.o.lvn.=uft : 12.5 k

    * : + * {)= z., l ,

    C' =

    (trt)\s , l' l2'5 y o3 )

    Ex: 1.24 Refer to Fig. 8i.23v.: R, : R, ,s n.+a1R Rs+ R,*+ |" rC ' C{Rs + R,)which is a sTc fnction.

    /,o, : ;;76|;1 = t l"

    C>2?r(l+9)1o]x1

    : 0.16 F

    = 159.2 pF2 x |05

  • Execise 2_1

    x 2'lThe miimum number of termia]s rcquired by a

    single op amp is fie: to int erminals' one outputtermina|, one terminal fc,r positive po\er spply and

    one terminal fo negatie power supply.The minimum number of terminas reqired by aquad op amp is 14: each op amp requies twoinp terminals and one output terminal (account-

    ing for l2 terminals for he four op amps). naddiion. he four op amp can all share one termi-nal for positive power supply and one terminal fornegative power supply.

    x 2'2Equation are q = (r_ l');

    I

    U,,j = ?] U|. Uicm :

    '(l,

    + 2)

    a)

    ' - ''! _ o_}': _0.02V -2mA Io'aia: t.- Ul =0 ( 0.2): + 0.02 v

    = 2mI,n. = '(_2mv+):

    lmV

    b) lo : or(5 - v|) 9 r : 5.01 v7i11 : 7_ al:5_5.0l:0.0lV:lomV

    tt4., _ 1,

    _ vrl _ ;(5.0l r 5) = 5.rn5 v

    :5V

    c)

    vj: A(r-UI) = lor(o.998 _ 1.2) : 4v7,i : 2 | : .998 _ 1.2 = _4 mV

    rl',^ _ )(1 + ?,r) = ;(|.2

    _0.q98) _ v

    d)

    _3.6: l03[ _ (_3.6)] : lor(v:+3.6)+ ,f2 = _3'6036

    id = 2_ vl = _ 3.636 (-3.6): 0.36 v : _3.6 mv

    o,"- : \{.o,

    + "r)

    : Lt 3.6 + (-3.6)l: -3.6 V

    Ex: 2.3From Fire E2.3 we have: yl : y,l andV,, = (G.V2 G.v'\R : G.R(V2- V1\

    Therefore:

    V' : G.R(V''V1)That is the openloop gain ofthe op ampis : cR.Fr G. : l0 mr' and : l) we bae:A = l l0 I0 = l04/ orequia-lentty 80 dB

    Exz 2.4The gain and input resistance ofthe inertingamplifier circuit shown in Figure 2.5 are

    _ & .ndR, resecivel. Therefore. e hae:R,

    R : 1 k and_& = _1_4. = 16,Rr 'Thus:

    Rl:10x1k:1M

    Ei: 2.5

    From Table 1. I we have:

    R" _ + . i.e.. oupu is open circuit

    The negaie inpu erminal of he op amp. i.e..

    is a virtual gound, ths = 0

    V6:V, Rii:0-Ri,: Ri,

    R.=bl R1 - -R+R- - -Ri |o-n '

    : _lok

    R, = # and is a vinual gond ( = 0).

    thusR,:!:oRi:Since ve are assuming tha the op amp in histransresistance amplifier is ideal' the o amp haszero oupu resisance and therefoe the outputresistance of his transresisance amplifier is also

    zero. That is Ro : 0 .

    R= l0k

  • R=l0k

    Exercise 2-2

    xz 2.7

    connecing the signal source shown in FigureE2.5 to he input ofthis amplifier \rye hae: is a irtual goud that is = 0, thus he cr-rent floing through he 10kf,) resistor con_nect between ad ground is zero. Thereforevo= vi- Ro.5 m:0_ i0K 0.5 m

    x 2'6

    2 Ru=l0k

    | Rr=lk

    v"

    Rr=lk

    v is a virfual gound, thus yl = 0 v. lv y' _' R| lk

    Assuming an ideal op amp, the current flov,/inginto the negatie inpu erminal of he op amp iszero. Therefore, i2 : i' = i2 = 1 mVo: V i2R2:o_ imX10k

    ;' =Vo: |OV - --l' Rr 1ki6: ir_ir= lomA lm= llmA

    vo|ase sain _ Vo _ _l0V to/lv |or 20 dB

    crrensain _ _ _lom _ _lo/' i' Imor 20 dB

    Poer sain _ Pl - - lo( lo mA) = l w/v' Pl llmAor 20 dB

    Noe hat ower gain in aa is lolog,n|!|."'"lP,l

    vl

    For the circuit shown aboe we have:

    v^=(E!v.+&v"'l" \R, ' R, 'tsince it is ruired that V6 : -(V 1 + 5V).We want to have:

    &: t "na&: sRr R2t is also desired that for a maximum output volt-age of lo v the cuent in the fedback resistordoes not exceed I mA.Therefore

    JlJ 5 1 --.2 !9l R. okRf / lmt us choose R, to be 10 k(! , then

    R' = R, = 1ok andf' = & = utl'5

    Ex: 2.8

    " : (ftff),,-(tfl"_(ff)n

    \iy'e want o design the circuit such thaVo:2V1+V2 4V3Ths we need to hae

    (L,&) - 2. (&]r&) = l ana& - +\R|,/Rr,/ \R2,'\Rr/ frFrom the aboe thee equations, we have to Findsix unknown resistors, herefore, we can araily choose three of these resistors. t uschoose:Then v,/e hae

    v1

    il

  • Exercise 2-3

    R.: T(ft)(ff)

    (ftfr)

    e have (refer o the soluion ofexercise 2.9):

    To fid he contribuion of y2 to yo we set

    V : Vl : 0' then:. vo : 4v2To find he contribution of y] to yo e sey = y, = , thenv^: ek9v,= ev," I kl)combining the conributios of yl,y2 and y.] to

    Vs we have: V6: 6V 1+ 4V2- 9V1

    Ex: 2.11

    Ext 2,9Using the super position principle' to find he con-ribution of to the outpu volage , we se y2= 0

    The y* (the oltage at the positive input of he op

    1amp is: V* : ;-v l = o.6v IThus

    v,: (r +?tfi)r- = lox.ov, : v'To find he conribution of y2 o he o.lpu volt-

    age y e se vt = 0.7

    Then y* = iv , : 0.4 v,

    ence

    v" = (l 9'}r. _ loYo'42 _ 4v2lk/ 'combining the cont.ibutions of 1 and 2

    To Yo we have Vo : 6V | + 4V7

    Ex: 2.10

    3kUsing he super posiion principle, to find the con-

    ribution of y| to y \ir'e set y2 = V, = 0 Then

    : !!: z.s4

    : ,,* f x 1! : 2 = , : 5 1: =f,x]{ = l=r,: Io

    -'*} = r-* = l-fl _ R:v, R, Rr ',f V, = 19 then it is desired thatl' = l0 .Thus.

    i_ l0 _ lR, 'R', |0V

    Rt+R, l0R,*Rr: l M andR, : Rr+R, : R, :0.5M

    x 2.12a)

    v^vo: Alv v l..1v-: v' --!

    i'' i'=Vo_V _ _- =(! *)vL R, R, \R] R,)

    v. = (, +fr), :(,.ft)(r-*)=I + R,/R.vo. ___?vo (+RzlR|)y/

    vo_ lI RrlRt --_

    l+ R./R|v , 'l'R2lR| , - l+R./R|AA

  • Exercise 2-4

    (b) For Rl : l k and i2 : 9 k the idealo

    aue for he closed-oo gain is l - . hal is

    lo. The actual closed-loop gain is c = l0 ,l+

    If = 101 then c = 9.901 and: G_10x:,|: _o'999 - |1

    10

    For V, = lV, Vo = Gx Vr : 9.901 V and

    V^=AV vv' v yo _ 9'9o|' 0: 9.9 mVf : lOa then G : 9.99 artd. : _o.l%For y/ = l ' vo = GxV' : 9.99'therefoe,

    v.-v = v o : 9.99 : 0.999 mv - I mv'l4

    f A = 105 then G : 9.999 ande: _o.o|oFor y, : l'vo: G Vr:9.999thus'v. - v = vo = 9.9q9 : 0.09999 mv I0':. mv

    Er:2.13i1 :OA, V1 : Vr: lV,

    i,: v':JJ:1-4' lk lki, = i, = lm,

    _ torne _ -i,0PL _ vox iL - 10X10 _ P vxi l10

    x 2.14(a) load oltage

    _ lk X| - lmv1k+ ! M(b) load oltage = lv

    Ex: 2.15

    (a) R| = R3 = 2 k, R: =R = 2 kSince Ry'Rj = R2lRl we have'

    '' _!:- _ & _ 2 = tV/V" V,r-V,, Rr 2(b)Rid=2R|=2X2k=4kSince '.ve ae assuming the op amp is idealRo=0

    Vtt

    vD

    2 9k

    :[*],'ftfr

    v.

    lk

    V6: V1* i29k = l + l X9 _ lov

    i': Vo': l0 : torn.' tkt) tkl)io : iL+ i2 =

    ' nA

    yo _ 0 = loY or2odBv, lv v

    (c) ,. = h: #t4)( o& t)

    Ro _L:Rt Rt

    Ro*lRr

    The \ols case common-rne gain 4m happens

    when |",| has its maximum vaue.

    f the resistors hae l tolerance, \,ehaeR4no'(1 - 0.0l) < &< R4*,(t +0.0l)

    R1".n(1 + 0.01) Rr Rr"".(l - 0.01)where R3nom and ftano. are nominal alues fo R3

    and Ra espctiely. ! e hae ;Rrno, = 2 k and Rno,n = 2 k, thus,

    2 x 0.99 < R. < 2X l.ol2 l.0l R1 2xo.99

    s'oz = 8!

    = oz'mR]

  • Exercise 2-5

    simlaly, we can sho ha

    g8.o2=&=rc2.02R

    Hence. _ 102.02 < _& = _q.oz

    RTherefore,

    a=&-&-a=lRo-R,l =aRr Ri lRr Rrln he \orst case

    lR,, R:ll l = 4 =l 'l .1+& I+98'02

    Rr

    Note that the worst case cn happens when

    & = 9s.o2and& = ro2.o2R1 RlThe differential gain Ad of he ampifie

    isa,, = !. therefore. the corresponding value o["RlCMRR for the o.st case .- is :

    cMRR _ 2 nn]jll _ 26 1nn!!1o2'" '"|eJ 'w t 0J4 j

    CMRR = 20 tog(2550.5) :68 dB

    Ext 2.16We choose R3 = i, and R4 = Rz Then for thecircuit to behave as a difference amplifier wiha gain of 1 and an input resistance of 2 k

    ,_(op mpr) : V : 5 +0.5sivl\J : 1\2_ v|t : 0.l sin/ -The o lage at the oupu ofop amp A.

    - : V,' R' !g' 2R': 5 0_5 sin}t 50 k X '01 sintlk: (5 _ 5.5sint)

    v2 - The oltage at the outpu ofop amp A2

    V"' : l,'+'x]1' 2R'= (5 + 5.005 sin)v

    .R,U,(p mp ) _ ,: ,. & * = ,,'?l -i

    ...R] _ R4 _ lk: !"-': !,s + 5.)5 sintl2'* 2'

    : (2 5 + 2.5025 sin{rt)V? (op mp 1) : y-(op mp Al): (2.5 + 2.5025sint) v

    ",:ft(+&),,"|0 k(I * 0'5 M]

    ^ o.I.ln.,

    l k\ .5 M.,,: l(t+0)X0.0lsiot

    10.01 sint V

    Ex:2.18

    v, (+(+):],(+)d

    The aeforms for one period ofhe input and theoutput signals are shown below:

    10v

    0

    we requrre

    ,4.:&:16,n6"RRi,1 : 2R1 = 2kR! =Rr: AoR' : 1 X 1k :Therefore,R!:Rl:0kRu=Rl:l00k

    E\t 2.17GienV,".: +5Vyd = losin mv2R, : 1 k, Rz : 0.5 MRr:Ra:lgk{)

    t-U- : urc. )U,o:,-: 5 0_005 sint v

    I2 = \\fr + _'D

    = 5 + .oossin} v'(op AmpA,) : Vt : 5 o.Ssin

  • Exercise 2-6

    liy'e hae

    -20:

    c: !!xmsXo.sms20

    xz 2.19

    v'(+

    xz 2-2l

    (+)J o (+)

    C : 0.0t F s the input capaciance ofthisdifferentiator. ry'e want cR : 10 2 s (the timeconstant of the differentiator), thus,

    ,^ 2n=--.!lj-=I,t

    0.01 FFrom uation (2.57), we know that the trasferfnction of the differentiator is of the form

    j!) : _ i.cnv,( iw\

    Ths, for = 10 rad / s he differentiato tans-fer function has magnitude

    ll _ Io" lO 2 : 0.l v/v and haselv : _90'For w = 103 rad / s tbe differentiato. transferfunction has magnitde

    ll : o'X lo-2 _ lov/v and phaseI Y,l

    : _90"f '!e add a resistor in sries '\ith the capacitor tolimit the high frequency gain of the differentiatorto l' the cicuit would be:

    (+) vo(+)

    t high fr9qencies the capacilor c acts like ashort circuit. Therefore. he hi-freqency gain

    ofhis circui is: To limi he maniude ofR

    this high_frequency gain to 1, we should have:

    - t-t, - n:l,=lnR] " 1 J

    o

    -tCR

    I r'RI,

    :lCR

    -20

    10 d

    X 10X I ms

    %(+)

    The input esistance of this invering integaor is

    R, therefore, R : l0 ksince the desired inegration ime constan

    is lO-3 s, we hae: CR : 0 r s+

    6 : !l--J = 6.1 ,ro k()

    From equation (2.50) the transfer function ofthisintegrator is:

    v o0') : _ v (j.) jCRFor 'r:10rad/s the integraor transferfunction has magnitude

    l&l : __] . _ l v/ and phasel v,l l \ l0_'=90"For = 1rad/s theintegatortransferfunc-tion has magnitude

    l&l : -L.-.

    . _ l0) V/V and phaseI v,l lo / to-':90'Using equation (2.53) he fruency at which theintegator gai magnitude is unity is

    -'': | - l : IOrad/s"" cR ro1

    20

  • Exercise 2-7

    xz 2-2|

    9yl(mv)

    V'o = 1 1Vo: V'_ Vo'_ V'wheny+=-=0then

    V: o 5 mv: _5 mv. This inpt offsetvoltage causes an offset in the voage transfercharacteristic. Rather than passing through theoigin. it is now shifted to he left by yo

    2'22From equation (2.41) we have:

    SR : 15.915 kHz : 15.9 kHz

    x]. 2'23

    v1

    v.

    2V6^^^

    Using equation (2.42), for an iput sinusoid \ith

    freqency / : 5./' he maximumpossib]eampitude tha can be accommodated a the otpu\,r'ithout incuing sR distortion iS:

    u" : u"*,(*): rox I : 2v(peak)

    V: Vz v|Vro: V*-Vor-Vn order o hae zero differentia input for the off-set_free op am (i.e., y* - y' = ) we needV: V'_V _Vos:0 5mv=_5mvThus, he ransfer characeristic yo ersus d is:

    v,,, (mv)

  • Exercise 2-8

    x 2.AFom eqation(2'44) we have:Vo :

    "1R1 1!"a

    :lnXlM = 0.l vFrom equation (2.46) the alue of rsisor R3(p|aced in series with posilie inpu o minimizehe output offse voltage) is:

    Rr: Rrll R,:: 9.9 k

    R3 = 9.9k 1l0krly'ith this alue ofR3 the new alue ofhe outputdc voltage (using equation (2.47))is:

    Vo : o"R2 : 10 nA 10 k:0.0l v

    with the feedback resistor Rl to hae at leas:t10v ofoutput signal swing aailable, wehaveo make sure that the autput volage due to yos has

    a magnitude of at most 2 V. From equation (2.43),vr'e kno that the otpu dc otage due to yo{ is

    ,/?lRz = lokf,rX lMR+i2 l0k+1M

    t = Y: a = o.16Hz"22

    x 2.26From equation (2.28) e hae:

    | - Ao'b+ , ' Ao+ = |. una'Ao\e kow

    2o |ogAo : 106 and /, = 3 Mz, theeforef"-l57

    By definition the openloop gain (in dB) at 6 is:o(indB) _ 3 = 106 3: l03 dBTo find the open-oop gain at frequency/\e canuse uation (2.31 ) (especially when/>>/6whichis the case in this exercise) and wrie:x 2.25

    Using uation (2.54) we hae:v^" 2 mvVo : Vos + 7ffl 9 |2

    _ 2 mv :-.j],

    =, _ 2Y_?mV l ms-6Dl _ 6)2mV

    openloop gain atl: 20 b(+)

    Therefore:OpenJoop gain at 3 Hz =

    20 los3 Mz : 80 dB- 3)Openloop gain at 3 kHz =

    20 on3 MH' : aB- -l kHzOpenloop gain at 12 kHz =

    20 lo 3 MHz : a ag'12 kHz.Open-loop gain at 60 kHz =

    20 lon3 Mz = ag"60 kHz

    x 2.27

    vi(+'v. *l:

    ._f, |- , *,a,

    vo = vos(1 *\)-z : 2m(| l #)l+ R', = l0oR. - loMl k(

    Tbe comer frequency of he resuling sTc

    n"1*1;5, = J-CRt\e know Rc : l ms andR: 10k+C : 0.l Fhusw

    --_L..._

    _ lrad/s0.l F x l0 M()

    The waefons fot o.te priod of the inut and theotput signals are shovn belo:

    t0v

    0

  • xercise 2_9

    slope=SR

    We have

    -20:

    cn: !9x20

    Therefore:

    "fn = -. and Il+--i

    Rt

    f':2Hz

    _9 |-6 o-l X 1_6

    cRJ,,

    l dt

    Ex2.frSince dc gain of the op amp is much larger thanthe de gain ofthe designed non-invertingamplifier, e can use equation(2.35).

    1 V/S

    =9 1. : l.28 s

    Ex:2.30From equation (2.41) we have:

    SR

    -lCR

    lms

    2 z100

    l0x lms

    : 0.5 mst,

    +& = landRt

    2'rV o ^^"

    : 15.915 kz : l5.9 kHz

    Using equation (2.42), for an inpt sinusoid with

    fruency / = 5 jrM, the maximum possibleamplitude that can be accommodated at the oupuwithout incurring SR distortion is:

    ,. : u.^-(Lu') = 10 l = 2 v (peak)Hence ./.,un : = 2o kz

    Exz 2.29For the inpu olage step of magnitde he ou_put waveform will sill be given by he exponen-tial aveform of equation(2.40)

    tf w,V < SR

    162115 y 5 49 y:< JL2f'y < 0.16 v. thus' the agest possible input olage sep is 0.l6 v.From Appendix F we kno hat the lo% o90%rise time oithe otput aeform ofthe form of

    eUaion (2.4o} is - - 2.2!' ' _ ,Thus, r, : 0.35 sf an inpu sep of amplifude l.6 v (l0 imes aslarge compared to the preious case) is applied,the the output is sle1v_rae limited and is linearlyrising with a slope equal to the slei-rate, assho\rn in he followig figure.

    \y, (*)-20

  • xercise 3_1

    Ex:3.1T:50K

    ^-3/2 [/(2K)n': l P '

    : 7.3 10'l(5o)]" e- t'l2(2 x 8'62 X lo 5 x 5{))

    1 9.6 x t0 3elcmlT=350Kn. = BT3l2 e-F'El(2'

    = 7.3 X 1o5(35o)r/2e_l'l2(2x8'62xt 5x35)

    : 4.15 x lOrr/cml

    Er(: 3.2

    ly'o : l0r7/cm3F.om Exercise 3.l i at

    T:35oK:4.5xtO/cm]nl: ND : |ol1cm1

    .2

    - (4.15 x lorr)'?lor'7

    = |"72 x |o6lcr3

    x: 3.3

    t 3 K' ,, : l-5 x l0l0/cm3

    want eectron concentration

    _ n_ - l'5 X o|o : l.5 r lO!/cm}" lo

    .2

    .''No: ": L' nr

    _ ( 1.5 x toto)21.5 x to4

    : 1.5 x 10r6/cm3

    Ex: 3.4a. '-driff : _,E

    ere negaive sign indicates that electronsmoe in a direction opposite to E'We use

    .-diff = - ,E: |]5o J- ...tm - I0 acm

    2 lo-': 6.75 X 106 cm/s : 6.75 X 1o4 /s

    b. ]lme taken to cross 2 ,m

    l"nnh : 2|0" - ]on.- 6.75 x n4

    c. n n-si driffcuent density Jn in

    J^ : qnp"

    = 1.6x to-rex lo'ux 1350x 1V2x 10 4: 1.O8 x lOa '/cm2d. Driff curren , = Aqn "-diff

    : Aqn": 0.25 x 10-8 x 1.08 x 104=21 A

    Note 0.25 m2 : 0.25 x l0 8 cm2Ex3'5 J,: qD"From Figure E3.5

    no : !0|1 lcml : lo5z(m)3D, : .15 cm'/s - 35 x (loa)2()2/s

    : 35 X 1o8(m)2/sdn |5 _ -^5 -2a;= l : lum

    .': qD,

    : 1.6 x lo-re x 35 x to8 x 105: 56 X 10_6 /(m)'z= 56 /( m)'2

    For/,:1m:J"X

    *: lT: 10'l .=18 .,J" ss (m)'?

    Ex: 3.6Usig uation 3.2lD" Db

    D^ : "V = 1350 25.9 X 10 3-- ).

    = -r) cm /s

    Do : oV1= 480 X 25.9 10 3

    = 12.4 cm2ls

    Ex: 3.7Equation 3.26

    \ : /2" *fr)v'q

  • Exercise 3-2

    s one can see from aboe equation, to increaseminority carrier-concentration (pn) by a factor of2, one must lower ND (= n,) by a factor of 2.

    Ex:3.10

    Ex: 3.8n a p+ n diode 1v >> lVD

    as Comlared to n

    '' = oo'i(+- 9-,^)

    . t010

    * 1')v,

    Equaion 3.3, J :

    =of*(,\u"

    lD1'l|i, + /L= ,l\ N^" "*z 2es1 ^ + o1u^q \ NoNo ) "

    "': i(): (ffi;'' uatin l . = on'( Do D" \\LoNo'L'ol

    "'n"" u" here approximately

    simila aues, if Nn >> o, hen the erm

    -2!_can be neglected as co marto ffi

    ". lr= qn 2_

    Ex:3.11

    Equaion3.26 " ff 1r";'")u"We can ne8lect the term 1since l{ >> Nr)

    :"#=w ff,:w

    tv.Equaion.1.28. X" = lv;;*since 1y',4 >> ND

    =wy2: Wl(h)

    uation3.29, a' : (i+"u )w

    = . }y since l{ >> y'{D

    I AqN 1W

    since ly' >> N.,

    : l J-z.gv oEx: 3.9

    n example 3.5. ly', = lOlt/cm3 and

    D: lol6/cm3n the n-region ofthis pnjuction die

    n,:1Vr:1167"rl

    " !; (l.5 X lo|n)2 = 2.25 l.a/cm,

    , ll''

    : 10 4X 1.6x 1o-''x1.5 x 1o'1'

    s x lo-o x !! l0 x lo_'x lo'82

    = l.45 X lo-l4

    : r("u'u' _ 1)

    =r"u : |.45 X lo l'e5/(25'9 x l

    r)

    : 0.2 mA

    Ex:3.12

    w: - Vt)

    _ |zx .uy 9''(-l , _L1o.l+ o.sl,r/ .6 x to '' \t'' lo'o,,: t.66 x l0 5 cm = 0.166 m

    Ex:3.13

    E"1J4Xr l . l \- i' '-- " 'ir l-: + - - l(0.814 + 2), l.6 X l0 '' 'l0'_ l'' ,: 6.08 X 10-5 cm : 0.608 m

    Using uaion 3.29

    o,: n(ffi)w

    2e,q

    F"T#+)".

    * fr)v,

    * v,l

  • Execis 3_3

    = l_4 } t.6 , ,o [ lo|8 ' lo|6l , o.o , t' 5 .,nI rot8 * rot6J

    = 9.63 pC

    Reerse Curre' =', : o o'|(}1* "

    * fi): 10 la x .6 X 1o_|9 (1.5 X 1'0)'?

    ,( ro * t8 )\5xI0ox!'o lX l-4X lt,,/:7.31015

    x:3-14Equation 3.48,

    .,.= ^J(#h*)

    Ex:3.16uation 3.5l

    "_: !i." Dn(5 x lo al2

    5

    :25nsuation 3.57

    c. = (h)r

    n examle 3.6, N. : 10|8/cm] ,No: 10r6/cm3ssuming N^ >> ND

    =p:25ns

    :.Cd : ( 25 x lo-:) o.t x to '\25.9 X I "/: 96.5 pF

    c': : !-,-l" lv Ev: !^[",'x l r{eu"t

    : .-1. ! 1gu' _'" dv' /

    : !! y 1"av'v

    -l]l\v 1

    I

    : 3.2 pFuation 3.47

    rrlt + --1( 0.814= 1.72 pF

    Ex:3.15

    - 1)l

    1)

    to'8 x tor6\/ I \

    'nl * ,nlo /( 0.8 t4.

  • Exercise 4 l

    Ex: 4.1Refer o Fig 4.3(a). for y/ 0' the diode con-ducs and presens a zero voltage dop. Thus

    v o : v For y, < 0, the die is cu-off' zerocrrent ffows throgh R and V, : 0

    ' The

    resuls is he transfer characteristic in Fig E4.l

    x 4.2see Figure 4.3a ad 4.3bDuring the positive halfofthe sinusoid, he diodeis forard biased. so i conducs resu|ing in,, : 0 During he negaie half ofhe input sig-nal v,, the diode is reverse blased. The die doesnot conduct resulting in no cuaret flo\ring in he

    circuit. so vo : 0 and , : o = This resuIs in he waveform shown in Figure E4.2

    lO mA

    dc component of b

    1^ l0: _7 : -1

    = 3.18 V

    x 4.4(a)

    ij:2m.

    (c)

    (d)

    -5V

    Ex:4.3

    , ;, rov^ : : -

    :" R lk,::2mA

    1^

    (e)

    _]

    2

    (

    (b) lk

    : ]! 7

    +v: tv

    'f,,:

    +3V

    +2

    +t v

    Ex:4.5y = l

    lo - o51 = -_lm.'.R:3.133k

    5V

    5V

  • Exercise 4-2

    Ex: 4.6

    uation 4.5

    Vz_V : 2.3viol.j(1)t room temperatue V7 : 25 r

    +

    vD

    V' V = 2.3x25y lo'X|oc(#): 115 mV

    x 4.7

    o-] :1se07l025

    /. : 6.9, 'o

    to

    Nowi:.|m

    v : v h(i) = 25 X 10 ,".(#iF): 0.64 V

    For i = l m

    V=25x!1rlXl0-r'l\6 g x ro-lo/

    : 0.76 V

    Ex: 4.8

    : l25 25 : l0o"C1s = l0 lax l.l5

    = l.17 1o'8

    x 4.9

    Ato'c = |V : t,-.almsince he reverse leakage cuent doubles for

    eery 10"c increase, at 40"C

    l:4l A:4=V : 4 X l M : 4.0V

    @o'c r = 1*l4

    +v:Lx1:0.25v4

    Ex:4.10a. Using iterationDiode has 0.7 v drop at l m crrent.Assume V, : 0.7 V^:5_o'1 : o.4] m" 10 kUse eqaion 4.5 and note that

    Yr:0.7V. /,:1mA

    R: lok ,,

    Vrr_ 5

    vx- vt = 2.3 x vrloc(r!)

    v.: v1+z.:xv,(,L)First iteration

    V' = 0'' +2.3x25x 10 i"c() : .679vsecond iteraion

    ' _ 5_0'679 : 0.432 m' to kv2 _ o.7 +2..l x 25..1 \ lo-'l"c()

    : 0.679 V:0.68 V\e ge almost the same olage

    .'. The iteration yields

    a 1 o.43 m, yD = 0.68 vb. Use consant volage drop model

    V o : o.'1 constant oltage drop,^ 5_'7 = O_4] m" l0 k

    Ex: 4-11

    Diodes have 0.7 v drop at 1 mo71V-

    .'. Im : /se: sen1V : 25 m1, : 6.91 ,

    'o to

  • Exercise 4-3

    For an output oltag of 2.4 V the voltage drop

    across each diode : 11 : . v3

    Now he current through each diode is. ,,*/l25 . . ,)

    I = lse ' : 6.91 t 1o-'"e '= 54.6 m

    ^ to 2.454.6 x 10 r

    : 139 {)

    .,xz 4-12(a)

    : 1.'2 A

    +

    _ 25l1 = rrnl X l '

    _25Xlo-r-2.5loX I r

    Ex: 4.14For small signal model, using equation 4.15

    iD: D+2',1

    io: b'6uo (lt

    (d)

    (e)

    Ex:4.lJv-

    /o = 0.l m

    +

    -0.7V:V

    {' / = 0'l_r.5 5

    = 1 .72 m

    v=3-0.7: 2'1

    V:1+O.7

    25Xlo r 25() 0.lx10r

    3V

    2

    (0

    .)

    2.5 k

    5V

    t/:0 + *

    I

    +3V

    +2

    +l v

    (c)

    /r:lm

    1, : l0 m' r,

    -5V

    -5 V

  • Exercise ,1-{

    For exponentia mode

    io 2 |v ve :elo

    vl -i: i22_ io. : i.e ' _ io,lv_: iDle ' _ l |2'

    nthisproblemip, = 16 : 1 mUsing equations (l ) and (2) reslts and usingVr: 25mV

    b. For V, : 3 V, voltage drop across eachdiode=i=0.7sv

    _D '. = 4.7 Y l0 "'Ae

    D

    /s vve

    a. ln his probtem {! _ zo.v _ ,o ' i, lm.'. Total small sial resistance ofthe fourdies

    :20

    V(mV) l'r(m) rD(m)small expo.signal model

    -t0

    -5

    +5

    +10

    : ?Q:.4

    25 mVD

    2.4 k

    c.fio:5 i-:5_1=4mcross each diode the voltage drop is

    v" = v,h(?)

    : 25 X 0 'x l"/-1-]!_' )\47 x l '6,i= 0.7443

    Voltage dmp across 4 diodes: 4xo.7443:2.977

    so change in Vo = 3 _ 2'977 : 23

    Ex: 4.16For a zeer diode

    V : V.o rr'10: V,"+0.01 x50v." : 9.5 For ,z : 5 mV, : 9.5 + 0.005 x 50 : 9.75 V

    4.17

    0to15m

    The minimum zener current shoud be5 x lzk.: 5 Xl :5m.since the load current ca b as large as 15 m,we shoud select R so that with /. = 15 mA, azener crrent of 5 m is available. Thus the cu-ren shouId be 20 mA ,eading to

    R _ 15 5.6 _ 4720 m

    Maximm power dissipated in he diode occurswhen /.= 0 is

    .", : 20 X lo_] X 5.6 = ll2 mv

    a

    b

    c

    d

    Ex:4.15

    .'. For each diode ,,,

    v-But = --J+5:

    '''1D:5mAx6a:15 3:

    5m

    _.4

    -{J.2

    +O.2

    +O.4

    -4.33

    _.18

    +O.22

    +O.49

    +l5v

    15 V

  • xercise 4-5

    Ex:4,18

    t5vEx:4.19

    FoR LNE REGULAoN

    Line Regulation : 19 :i

    For Load Regualation:

    Vo _ ,r,' lm

    - , ,nA

    Vs=

    a. The diode starts conduction a

    '=Vo:o.7,s : yssint, hee vs : |2{2

    5 : V5sin = Vo : 0.7 rtsi : 0.7 = .ln ,f 0'7 ) - z-+'\zrtl_conduction starts at and stops at l80 _ ..'. Totaconducion angle : 180 _ 2= 175.2"

    ( 0)t

    b. ,r*n - :- | {y'\sin v D\d6'zJ

    =;,'r,*_v,]t=; u

    _ 11 v.cos yscos( _ ) yD{ _ 2)|

    Bt cos :1, cos(zr ) :_1 and_2:

    2V, VD'\E 2 2: vt vo

    2For V, = 2aD and yD : 0.7 v

    uo'*" = :s.sv

    t no Ioad y7 : 5. v

    200+1

  • Exercise 4-6

    c. The peak diode current occers at the peak diodeoltage

    " '' _ --T- = 163 m

    P| = +Vs: rt: l7v

    xz 4-2l

    ys

    a. shon in the diagam he output is zero

    between (rr _ ) o ( + ):2

    Here is he ange at which he input signal

    reaches yo

    .'. V5sin : V,

    = .ln ,( V')\ yl

    2 : 2s1-l!1\ y.,,

    b. eage value of he output signal is given by

    u"^"' _ !|r, '"

    [' , r,,'n - ,,,ol_ ,nl ,, I

    : 1[_yscos _ v o =',

    ='- '"

    c. eak curren occers wben = !

    Peak Current

    _ v Ssin(l2\ _ vD : V'_ VoRR

    f ,s is 2 v(rms)

    then ys : .zx z : rt

    eak current _ '2{2_o'7 - 163m1No zero output occurs for angIe : 2( _ 2)The fcaction of the cycle for which ,o > is

    _ 2(1t _ 2) x rco2zr

    2[ zsin '(ffi)]X1

    2

    = 91.41o

    verage output oltage yo is

    vo: 2\ vo:2x|2"2 -o.7 : 1o.l vneak diode currnt ?D is

    _Vr_Vo nrt_o'7'o- n _ |

    = 163 mAV: Vs_Vo+Vs: nrt _ o.' + 12{2= 33.2

    xz 4.21

    -ys

    yo,", : +|(y.sin _ 2v d' 2J: t-vr"o' 2voli-=u"

    1

    =:-|2v. 2vn6 2)]Bt cos - 1cos(7, _ ): _t_2-

    't t)

    =V""":'-5 2vD

    'l - 15: '::-::-:::: = 'l '4 : 9'4

    (rr + ) 1

  • Exercise 4-7

    (b) Peak diode curren _ Peak olageR

    _ vs-2vp _ t2rt - 1.4Rl: 156 m

    v: y5 vD: l2Jr- 0.7: |6.3V

    Ex 4.22Fll wae peak Rectifier:

    vvri^ _/')r = t -'J-: -:2. 2JRC 2JR=Yr

    T/2

    - v [ r * 4)- . RC|= l'- a)

    2 fRCTo find he aerage crrent, note that the chargesupplied during conduction is equivalent to hecharge los during discharge.

    Qsppto = Qosi",,,, = cv, sUB (a)

    Dr

    Ja, -t.V.t-

    R

    j'D7

  • Exercise 4-8

    = '' *!!' !-1' v, ! v,J: ,|'-"ff]: t,l'*2"ffif a.r.o.

    x', 4.23

    The conduction angle , ca b obtained usinguation 4.3o

    'o, = J-:ad = 20.7'

    The outpu oltage, vo , can be express as

    o = (V _ 2V og)e 'lrcAt he end ofthe discharge inervalo: (V'2vDo_ v')The discharge occrs almost over halfofthe timePeiod =12For time consta Rc >>

    2

    e 1l-

    .'.Vp- 2VDo- V, : (Vo-2VDd(l -

    +v, : (vP_ 2vo x L

    HeeVo: nrt and v, : |Vr, : 0.8 V-II

    f60t : (12rt - 2 ^ 0.8) x

    The average and peak diode currents can be calcu-iated using equations (4.34) and (4.35)

    ,D,'": /.(l -"E)Herel. = !J,andVo: 2rt 2 Xo.8, y,:1v

    i1,,." : 1.45 A

    rr*o: (t +z: 2.74 A

    v of he diodes

    = Vs Voo : l2,D - 0.8 : 16.2 VTo keep the safety magin, select a diode capableof a pak current of 3.5 to 4 and having a Pvrating of 20 V

    x4.A

    A

    r.. !2RC i*+

    t1 1(

    " |)2 RC)

    The diode has 0.7 v drop a 1 m cent.

    iD l,'D o'1v l

    2X60X Xc=r^: y,ln(

    i' )+.v" \l mA,'For z1 : l0 mV, vpt is idea op amp, so i*

    :. iD : iR: 1'0# : o reD _ 25 x lo 'rnl--o '1) + o.7 = .58 v\m,/yr: D+ 10mv

    = 0.58 + o-1: 0.59 V

    1,o = =

    C: *+*: 128l Fwithout cosidering he ripple oitage the dcouput voltage

    : r2.la,2 x0.8 : 15.4vf rippie oltage is included the ouu voltage is

    = nrt'zro._L: lasu2

    Diode cuen without taking ripple voltage into

    cosideraion : |2'.2.'.2 x o.8 = o.|5

    ^1

    10 mv

    2rt-zxo.s

  • Exercise 4-9

    i^= o:-L:1.a" lk lk

    v : o.7 + 1 k X 1 mA

    For v, : _ 1 v, the die is ctoff

    V: _12 because it is idea amplifier

    Ex 4.tr5

    irr>0 - diode is cutoffa: 0V

    /, < - diode conducts and opamp sinks loadcurent.

    x 4'i2'6

    ForU=_5vDiode D1 conducts and

    Io= _5 +;(+l,, + 5)

    : [-zs-e)v\ 2.iForU/5vDiode D2 condcts and

    Io: +5+1(l_5)

    : lz.s * l!) v\ 2)x 4.27Reersing he diode results in he peak outputvoltage being clamped at 0V:

    Here the dc component of 6 : V o : 5 v

    !'5V

    +

    l k

    Both diodes are cut-offfor _5 < rl s +5and ,, : 1

    D2

    +

    5V

    l0 k

    ] k

  • Exercise 5-1

    l^ = !'Yv 2 = 0.25 m 2aL ovfor al ,Ds > Vr, : o.5 V.Ex: 5.6

    v^= vL:50XO.8: V': l = 0.025 t

    va

    V25: l V>Vou: o.5+ saturation: o :

    \''Yrv"ou1l + xv or1

    l, : l' 2x l.s'?( + o.o25 X )0.8: 0.51 mA

    , =V^ = = 7a'4 k -8ok'' D 0.5l

    ,' _ uo' + r^ - 3J _ o.ozs ,l" tn " 80KEx 5.1

    +5v

    ,".-JJl{'

    7'D

    l= 6o A l 2

    Y : rc= :6o0 uA/V2

    (a) Conduction occurs for UGs < y : l v.ole =vP + yJ: +4v.

    (b) Triode fegion occurs for ,cD S y,

    or e - D< -|ot 1JD> e + 1(c) Convesely, for saturation

    D< + |(d) cien 0

    o = \o|vo"t = ls :.V ou| = o.5 = _cS+t

    '

    vo,

    8os

    : 450 cm2 / vS

    ,C,, : 388 A / V'?

    = (ucs - Y,) : 0.5 V._ l _ iY^',=!: s.Is!k 'L "' L

    : 0.18 m, so w : 0.93 mEx: 5.2

    c,, : ',: _ 34'q pFlm _ 2.30 fFzm'7"' t", 4 nm

    , : 550 cm2 z vsk"= "C.' : l21 A/2

    l^ _ !Y' - o.2 ^.Y' 2o" 2"' ^ :.Vy:o'.Vo..'in : V9: o. v, for saturation

    Ex: 5.3 /- : ! Yv 2 in saurai rn9 2J' oChange in /D is:

    (a) doble L' 0.5

    ) doubl w' 2(c) doble V.,- 22 = 4(d) double V^' no change (ignoing lengthmodulation)(e) changes (a) - (d), 4case (c) would cause leaving saturation ifvr,,

  • Exercise 5-2

    .. ,c : + 3'5 V.U9 U6 l l:4.5 V.

    (e) Fo. : _o.o2 v ' ad |vov| = o.5 v.

    ^ _ 75 uA and r. l 667 k,' |2| o

    ()At v" = 1 .

    "

    :'k"|v ""r(l

    + ||lUDJ])

    = 75 (.M) : 78 AAt VD : OV,/, : 75 (1.10) : 82.5 A

    , : ^J-s:: 3v' : 667 k'' lo 4.5 Ex: 5-8

    ": \'c,,'fv''vo.3 =.. 120.,2 '^ -,r, -

    V6y:0.5 vycs: ve + v, = 0.5+1= 1.5 V

    v" vV" = _l5 3" = -J------

    D

    - r.5 - (-2.s)0.3

    Rs = 3.33 k

    o : voo vo :

    f,x: 5.9

    2.5 - O.4 = 7k

    W o'12 m_:4' o.l8 m

    sauration mode (cD : 0 < v ,'vo : 0.8 v. : 1.8 - loRo

    t" : \"c.,!v " _ V-)1 :72

    ..-R_1.8_0.8:13.9k72 A

    Ex:5.1

    r-- *". s.slo. : o. v, J,, : o.s v,vov : 0.3 v.p : 72 A (saturation)t the triody'saturation boundary

    Vo=Vou=o'3

    .'. R, : l'8 V 0'3 v = 2.8 k12 A

    Ex:5.11

    Ro: 12.4x2 : 24.8 kAV,;" : 5 V, ssme ''ode egion:

    lD k.l., V,lv", _ vJl-, =voo-vo, t-'o- n I

    t/ / 1/2 \l \

    (5 _ t)yDs )

    + y;s - 8.8yDs + 0.4 = o

    = 7r, - 0.05 < ov lriode region

    /^ 5 - 0.05 = o2mA" )4.8xz 5.12As indicded in Example 4.5,

    vD2 vc 'y, for he ransisor o be insaturaion region.

    1, 2 l)0

    0.3

    v,, : 0.5 v.

    "C,,, = 0.4 nA / V2

    + l.8V

  • Execise 5_3

    D: o.32 nA :

    =Vr:0.8VyJ:0.8+1:V6 : V' Vo' :

    ^ Vo 3.4,

    Assume

    Vo : 3.4 V, then RD :

    Ex:5.14

    \uL" : !xxvbv

    t.8 v1.6+1.8:3.4V

    : 3.4 M,

    v _D

    5-1,4

    Vo^,n: Vo Vt= 5-l

    1o:0.5m9Rr.",:

    : t%a = rzEx:5.13

    Ex:5.15

    u/ : 0: Since the circuit is perfectvsymmetfical yo = o and therefoe Vo, = o vhichimplies he transistos ae tumed offand ID] =op = o.

    7r : 2.5 V: f we asum thi the NMos istumed on, then r,,o would be les than 2.5 v andthis implies hd MoS is off (V65 > 0)

    '" = :k, o, ' v,)"

    Io" : tx l(2.s - ys - 1)'/rr:0.5(1.5-V5)'

    Also: vJ : R]o" : 1oo"

    /r, = 0.5(l.5 _ loDN'2

    2.5

    + l1}, _ 32 D + 2.25 : o+ D= o.lM m

    Io" = 0, vo : 10x0.101 : 1.04v

    V: _2.5 V: gain if we assume th QP\Stum on, then yo > -2.5 Vand V651 < 0 whichimpiies the NMoS o, is urned oflo=o

    :5k

    R-, 5_3'4: t.6M"' l

    R": V' : s" 0.12Vos2 Vov-'+ Vo- Vou + ys yD 0.8+ l.6 = 24

    I

    I

    IJ-

    1.8 V

    1

    J l,,I

    =

    V,o: _o'4.

    lo= ol m^Iv2

    !Y _ |0m =+l _ _5.56 mA/VrL 0.l8 mVs: 0.6 + V,o: _1.0 v: _ 1.8 + rDR1rR:0.8-forvov = -0.6 V

    !io: )koV'u = 0.t m

    .'.R=80O

  • Exercise 5-4

    -- _ !-v -- ly.l l' _ ! , DP 2"L's 2x (us + 2.5 - l)2Vs- loDP2DP _ ( lor" l l.5)'

    = 1r, = 0.104 m^=a v = _10x 0.104

    :_1.4Ex:5.16

    vr,: 18vRD : l7.5 kY, = 0.4 v.

    k' : 4 rn l v2=0(A) cutoff/saturation Boudary

    6 : V,:o.4 v., ,, : UDs : l.8 v.(B) Saturai o/T.iode Boundary

    1.leo = tcs = v=o.4.

    = uo, _ |v oo _

    !*" uo, _ v

    'f n"] _ o'

    Us tl.8 35(Uc'J o.8 ,cs + 0.16)] : o.4

    351s_ 27 cs + 3.4 : 0es = 0'613 ., .1585

    o = 9o.1 A

    o : o'213 .(C) For u651. = Voo : 1.8 V., t iode,

    rDS:(k"v",)':179

    Vol, : Vor1r= roo -. o': 18 mV.

    Vr, = 1.8 V.V65 : 0.6 V.k,= 0.4 m^ / v2

    Y:oL

    Ro : 17.5 kf)(a) V6 : o.2 .'

    c. = k"v ou = 8 lV

    for Au: -g.Ro = - 10, make

    Ro : 12.5 kU65 = 0.6 V., /, : 0.08 m'Ve5 : 0.8 V.(b) kee R, : 17.5 k_8.Ro = l0+8- : 57l |!A'/

    = k' v ^',

    :.vv:0.|43'UGs : 0.54 V, /, = 6. ,4',Ds : l. v'Ex:5.1E

    Ex: 5.17

    oo'o---l

  • Exercise 5-5

    0.7 v.

    1mA/V2

    Desig for ',=!b _ -25. n," - 5 1"i

    :. E.Ro : 25 = k,VovRD

    n,":9= o' R" Ui_ Uo= R6

    : 26R'^ : 13 M

    "n' : ()"v })n'1

    = )^RoVo: l2'5 V6y

    and

    V6y: V6o_V, oRo:4.3 _ |2.5 vov

    :. vv : o.3|9 .8.: 3l9 A'/vRo : 78.5 kvDs = vov + v

    ico:0+26fi=V,

    ..-l'''j.L:z.v26

    Ex:5.19

    ' , 1'.!,:!+i=-+g-

    ..R"q:1,,il *Ex: 5.20

    Voo: 5.

    :0l" : 2o Al v2Ro: l0 kOY=zoL(a)Vcs = 2v+vov = |.' : l'rvi": 2 AVos: Voo_DRD: +3v(b) g^ : k:"vLvv: 4 AlV

    @) u = !!:_r.Ro : _4

    (d) Us. = 0.2 sin , uUaJ : _0.8 sin t 1I.los _ Vos+a"+2-2 < UDJ

  • Exercise 5-{

    = [200 + 80 sin, + (4 4 cosr)]/D shifs by 4 A

    2HD _ - 4A = o.o5 (5.1)" 8o A

    Ex:5.212^o\g.=.Iv

    x 40 x (1.5 - l)'?/D:31 :

    " _ 2r0.1.5, =Vo: ]: s" lo 0.3/, : 0.5 m=g. : ff''":rz""l"os"8- = 1.55 m/v

    , :Vo =.! = l" ln 0.5x 5.22

    1, : O.1 m, 8. : l rfiA'lv ' k'" : 5oAlv?

    '^: ,'Vov = 2x'o'l : o.2

    Ex: 5.24

    ":

    'k'0,.-|v,|)":1xx-!9xt. l)'z2 0.8 : 216 A

    '.: #,: ' , : 72o tLA

    = o12 mt.l

    - .oa+v. _ ! ^-l _ rs u/u." 0.04r v'^x - _ 25 o.8 _ 92.6 k}' o 0.2|6Ex: 5.25

    n , : 2J2 "vo :2vo : AVou D Vou

    v'Ax L = vl:0.8m+ _ 2X 2.5Y0.8

    o.2

    : l0O V/VEx: 5.26(5.'7o) A,o : .(Roll 'o')(s.'72) Ro : Roll ro

    t = !9 : A R''' o, 'oRo + R L

    = _ 8.Ro;+ R'-,

    .'. A,, : _.(Roll R) : g.(R" llsame as (5.75)

    \| 5.27

    'oll n,t

    : lxi"Yrv,o": 1x 60

    0.3 m' Vy : o.5 Vl.2 m^ ,

    " = \,!v'."- =2 o

    k'"vu

    2X0.l _ 1)50 .. ^^,10

    Ex: 5.23

    8^: "c ^yLv ou Same bias condiions, sosame Vy and also same and 8,,, for bth Mosand NMOS.

    p"c "'w. = "C "'W " => t'

    -Yt : 2.,w"

    R'grci8 irv ' o gJ

    100K -f>Rin

    w= O.4 : --!

    wo

  • Execise 5_7

    o : o.25 mA' yov = 0.25 v,Vr:50V,^: \ : ,* ua

    8.:2:2nS

    A1)o = _8.Dll 16) 1_g.R : _4

    i, : Rril 16 =R6=2Okd|Ar, : Gu : _c.(Ro ll ,oll R)

    =

    c.(Ro ll R) : 2lfor f'" _ (lv.\ 2Vou = 9.g5 ..ao: (vis"| : l v.Ex: 5.28

    D

    &'. G1*-1r---

    lK +

    ssuming Vo --) o

    From Ex 5.27

    g.:2ms". 1 5 mv# - :---: - _-::--:jj-j-=g.Rr:.3V o'" l + g-f,1 2 mv

    .'. R5 : l.5 1

    G', _ A', _ _s.(RD|l R) _ _20 - _sl+8-R{ 4

    ;, : lc,i^,*l -- t v.Ex: 5.29

    R,":1:R,,.:1

    98. = 10 m/

    '": t= b=rD : 1 m

    cu=b=}o"'.",

    : (}) lo ,n l vlz l

    = +i0Ex: 5.3OCD amplifier

    R..,: l : l 8-: lO m/V8.

    n _ 2o = 2lo =l^ _ l-25 mv,,u 0.25v

    fn: f.'' 8'R' : o.9l v." l+g-R

    a,: t,,*j;: ,' ,,.

    Ex: 5.31CD (sorce follower)

    R.,,, : 2 : !=g. : 5 m/v8.

    g^ : k'"Y' ou : (o.4 mA / v'?)

    (w).zs vl- w = so\L/ Ll' : |"Yrv'o": 0.625 mA

    ^ g^R"'- t+s-R.for ,(

  • Exe.cise 5-8

    A : A-l1o .lR, --

    a o _ _---_f n t -8.

    (\t)

    ()-()2o , , V,,']-|=rv,+*_L'-rv,J

    for Vo : 2o .

    A,,o _ o'99 _ --_- j9 vl} - 40 v.t+ilg

    4ov.Ex: 5.33

    o : \'Yr{v o, - y,)2 + 0.5 mA12: I x t(Ycs - l)

    Vo' = 2.F=I.5Vthen:

    ^=!|x(2 l.5l2 _ 0.125 mA

    -'o : o.5 _ 0.125 : o.75 = 75%/,, 0.5

    llx:5-34

    ^ voo vD^o' '

    R. = vs v,s

    - 2-(-5) - 6klr' ], 0.5'+ RJ : 6.2 k

    f we choose RD = R, = 6-2 k then 4, wilsightly change:

    l^: lxtr(y-"-l)'z.Also

    Vs=_Vs:5-Rr/,2D: (4_ 6.2D)1+ 38.441D 5|'62D + 16 = o=+ D : o.49 mA, 0.86 m

    /, = 0.86 results in % > 0 or % > y. which is notacceptable, therefofe 1" = 0.49 my.: 5 + 6.2x0.49=-t.96VvD:5_6.20.49=+1.96vR. should be seleced in he range of 1 M ol M to have low current.Ex: 5.35

    1, : 0.5 m : "Yrv'o" = v'o"

    _ .52 _ l-I

    vo = |Ves: +1:2

    = y^R^:5_2 = .5

    .+ RD : 6.2 k standard vale. For this R,we hae to recalculate 1,,:

    ID:lXl(ycs )'1t: )(v oo

    _ RD D _ l'|-

    (Ves: Vo: Voo _ Ro6)

    l": \( 6.2 p)2 + o = o.! 11

    vn : 5 6.2xO.49 : 1.96 VEx: 5.36Using q. 4.53:

    8^rol + 8-r

    J RD = 6.2 kC)

    o = \'Yrv2ou .=> o.s

    =+Vo, = Vu+Vr= 1' +1= 2V

    9V' = '2

    0..5

    :1xt2

    6k

    x Lu

    '=t"rn##,*/,.. - 0.5x1+ /irF : 0.1 mA

    "uo : o.\ : )"(),v'"" - L"

    ' o'l x2 - o.25gv-,, - 0.5 v{} l

    Ves: Vou + yl : .5 v+Vc: 5+1.5: -3.5 V

  • Exercise 5-9

    p : Vot-Vo, 5 - (-3.5) - s5 k()

    "uo 0.1

    vDs7:'_vovVo'^'" : Vo": o'5 yD.i" = _4.5 v

    Ex: 5.37

    Y,:1,5vt!:lmlv!

    Vl : 75 '/o = 0.5m :

    \*''Y, v'o, ='nv : 1.0 v.

    2.5

    _2_5

    - 10v

    Vcs : V, + Vou : 2.5 VVc = 0Vs = '2.5 .V: Voo_ DRD = +2.5.

    ^: kYrnu: l mA/V

    ,^ = L = ls k" oVo _ 0a

    -figa= 0aEx: 5.38

    R'n+G

    v, Vcn: 4.o.

    s.: F': 1m/V.^: L = ls For ro -)

    Rl" : Rc : 4.7 MAoo = E^Ro: -15Ro., = l?, : 15 kFor r, : 150 k, R. : 15 kQRi" = 4.7 MA"o = '^(Rol| r) = '13.6

    R"- : R"ll .o: l3.6k

    -Rr,R,c, _ ;'n*,oR;_ _7'o

    7los = 1.lo : Vn5l l4,

    = 2.5 + cv(o.4 P-P)o is a2.8 yP P sinusoid superimposed uoa2.5 dc o|ae.Ex: 5.39

    8-g'

    8-roc'

    G8 ------o

    (|| ^ : -- _roRD

    - "'Ro *ro*RsR^+r^+R"(2\7t--: 1t- " " ""' "e'

    _ "8 + ,o + Rr(1 };ro'!

    'o _ vs;#, cr"''

    we vant

    I.5 inA

  • Exercise 5-lO

    l l ol'* l, '' U* lR, = o

    using (3)

    8rr oR D(RD + r) + Rs(l +gnro)

    2(R^ + r^\R. : --j-_-a_------gj : 2 l85' 1 + E-robasedon RD : 15 K, ro :

    g.: rmS

    Ex:5.40

    4R.;g

    I__1r_____l

    +-*Ri"

    EtroI + g^ro

    8.oll RL)I]Jld-R,

    Ex: 5-41

    8 ^- 1- 8^roRo3 RD+ ro

    k

    150 K,

    8.

    R'n

    A

    : l50 k:R^

    ri8

    R"", = *il.,

    8^: 1,A/For R.ie : 50 f,)k,"=a:ltou, : R, = 15 kA'r,o : + g.Ro :v = s.D| RL' =

    R,.

    + 15

    + 7.5

    G-: "' A" : 7.1' R +R. + Rt"^ v {b) c : R'" A,.: 0.768

    '' R,. + R,," '

    Ex 5.42see the nex pageFor oher R.ig

    R*ie Gv

    lk 1.7 51 k 0.68

    l0o k 0.07

  • Exercise 5_l

    using eq. (5.107) on page 324 ofth text:

    V, : V,o +' 6' + v u_ ^!-'lV, = O.8+o.4J+3_J71V: | '23

  • Exercise 5-ll

    using eq. (5.107) on page 324 ofthe text:

    V, : V,o+ '6' +_ ^!-'lV, = 0.8+o.4J+3_J71V:1.23

  • xercise 5_12

    Ex:5.43'.: +lv'v,: -2v%.-Y.=3VTo OERATE tN STURAON REGON:V : V^. V:aV

    DS mir

    ': \''Yr{vo, v*\2

    -! tz" t2 : 9 mA2

  • Exercise 6-l

    Exi 6.1rD.v

    :.c= ,e"' '

    962 _ '51 : Vr|

    "r':7+25|

    = 642 m

    "" : sc = !!a = 16-,, a""ls : lsc

    [, - i]

    : to_'6 x !!1: 1.0 l-16 A

    V"u = V, [f] : "'[]#]: 25 x 29.9336= 748 mV

    cz1t]

    o.Illl

    z-.. : 7 + zsln ]!'lLll: 758 mV

    lxz 6.2B

    +5 |5o

    -

  • xercise 6_2

    :.vc = vs_ v,c : vrn |f]For collector Area : l X Emier Areav6s : 25tn [f] : s .v

    Ex: 6.9

    ..s/-Vc/Vc = se lsce

    . . v' . !c'n: "

    + sce

    ,,,,"", : l .a l-,

    Ex:6.12

    FiE6.12

    : l' Yr, : 0.8 v at 1. :V rz' V "',

    : V'lnfrr/r']= 25 x 0.693 : 0.1733

    :

    :

    - V r'V - |a''9Ise - lsce

    ;F'"p-,-"';- (vF v Bc)l vlse - 1sc

    *n"'-"\ u*.-/

    "u''"o"u' * p rr/ ,

    ,*a:lffi: l0O x 0.2219 :22.2

    Ex:6.10

    I: evv

    2 mA : 11 "v/5

    v", : 25tn [fr, ff, 'o'1: 650 mV-: p l-:Exz' +I" 5l= 1.96 m

    ": f : $=39.2 .

    x:6.1l

    . vuu :

    " : !.5yr ln[1.5 X l ll]

    25 x 25.734643 mV

    lm

    :' v B7 : 0.817

    - : V- Vr :' -:5

    o Vru_Vuu ^'_ /. (*

    - l.5 _ 0.817 X ]! k2 101

    :338

    Ex:6.13

    +tov

    l.5 _ 0.5 k2

    Fig 6.13B:50'vrr=6.7vE: vB-o.7

    r 5v

    l0v

  • Exercise 6-3

    _0.7: 0.7v- _.7+l0

    IO K: .93 m

    Ex:6.15

    V3g decreases approx 2 mV/ "C risefor 30 risev.,: _2x30

    = 60 mVyE : _ mvsince /. is costant,. is constant.'. yc:0v

    r: #r: O.91 mYc:10-0.91 x5

    : 5.45 V' r 0.9l"5

    : 0.082

    Ex:6.14

    5k

    'v+t.7v

    vc

    ' V_V'''---R-_ 10 - 1.7

    5

    : .66 m, V"-o"

    _ I rrl

    : 0.01 mA, = Iu u

    : 1.65 mo:lr:1.65:o.gq

    1.66g=]r:]'65'65' 0 0.0lvc : cc+ cRc: -10+1.65x5 = 1.75V

    A + c, ic - 1""u"t'nt s !s!fo

    ^r^: \"

    , ,v . vrr. r"u"''u,..rc_,s - _ ,."va' |1 1!S1" L V^JQD

    i, = r"uo''u' + 1gg in rig (u)rO

    i- = \ "u'u'

    ... i, : piu+ 9s asinFig(b)to

    QED

    -5 V

    +t0v

    -l0v

    Ex:6.16

  • Exercise

    Exr 6,17

    ,o: b

    _l

    Fig 6-18By similar triangles BD CE

    l,,=+ .,= +

    , vcc- vc'e - R,_ r0 - 5

    l0: 0.5 mV"" : V"'* "R": 0.7 + l0 x 0.01:0.8v(b) edge ofsaturation 69 = 0.3 V

    ,^ : l0 _ 0._1 : 2J = 0.97 m' K 10: /: o.97/50: 0.0194 mV ""

    : O.7 + 0-0194 x l0 : 0.894 V(c) sauraed Vc : 0'2Ic: (l 0.2)/0:0.98mAB: c/pF = .98/I0 : 0.8 mys = 0.7 + 0.098 l0 = 1.68 v

    Er: 6.20

    vBB + lv

    Fig 6.20

    For Yrs : 0I= 0Transisor is oFF

    '"Ic = 0V, : V66 - R

    : + 10 _ : +10V

    (v)()

    Ex: 6.18

    1' _ cro V r'D ADC A : l X ll

    t01

    lm_ l+1 1+ Il: 1.099 m

    .'. - 1.1 mAEx:6.19

    Rc:10k,=50(a) active Y. - 5 V

    /c(mA) . .0 l

    l0oJ1

    oJol

    1000r

    16 15 lo4

    lM 00 k 1 k

  • Exercise 6-5

    vc

    Fol vRB= |.7 -: l.'| _0'7 = _l m'loc: 9s

    :500.1 :5mvc:10_5X1k

    : +5 v > yr, (so ctie)(a) ge of saturation Vc : 0.3 v

    - = Vr, _ Vr, _ lo - 0.3 : 1.94 ktl' l, 5

    (b) de satuation vc : 0.2 v1r = 0.1 mA (unchanged)

    Ic : .n.""a : l00.l : l mAR-: |0_0'2 = 9.8' |m

    *6.n+1v

    6.21

    vBB +l0v

    .

    lk

    Fig 6.22t edge of saration ,c : 0.3 vV"r: rRro.3+ 'R'- I[Rc + Rr] + 0.3

    . _ 10 _ o'2 = |'225 m' 4.7 + 3.3Vuu : 'R't o.7

    : 1.225 x 3.3 + 0.1

    Vr: Vo-O.1:4_0.7 :3.3

    R-: 3'3V :6-k' 0.5 mvc = v0+2

    =4+2: +6- = Vcc-Vc

    \| 6.23

    0_6

    vc

    v

    0.5

    Ex 6.A

    ro.""a = 5Then1.:51,"=6".

    = 8k

    10 _ .2

    : o.226 mv,= 6 "x 3.3

    = 4.48 VV"": V" + O.1

    = 5.8 V

    5x4.7 +6x3.3

    +10v

    +10v

  • +t0v

    l0v

    Ex:6.25

    Exercise

    x 6.27

    50=150n actie range

    1" - 5 07 - 0.04:l mA' lK.lowest for larges , : ": 150 X 0.043 - .c 0'3p ----:--' t50 x 0.04.1

    : l.5 kFor = 56. : l _ 5 X 0.043 = 6.78 vFor : 156

    +.3 v] . : 0.3 vx6.

    +0.7 v - 0.4 v_ +0.3

    V"-ov': +o.' . to-0.7'L 2

    : 4.65 m,': o.99 ,

    - l0-0.4 +0.7c 99 x 465

    : 2.2 kdt[.(max):0+o"1 _o.4:

    x 6.26

    Rclk

    +10

    -t0v

    R. - l_.7 9.3k't

    R_:l0 4=6k'1

    :50y"":155 = sv'" 15Rr, : 5 1| 00

    : 100/3 kV_ V

    V""

    i1

    R+[Rsrl(+l)]4.3'^ l I3 5t

    = 1.18 m

    +t0v

  • Execise 6-7

    ,: ,#q change :

    + 9.8%

    x 6.29

    +15Vttt+0.i03 + |.252 + 2.78 m

    Total cuent d'awn: 0.103 + 1.252 + 2.75 mA:4.135 mo\erconsum: y X 1

    : l5 x 4.135:62m

    Ex: 6J)

    :10,2 unchang1c2 unchanged

    v: va 0"l 1p, =

    vC' - o7" o 470

    : 101 1s3= tI z.ls _ lclL 2,7 JHence

    "^^ - ll_"' L( + l)oj7 z7 kJ _

    =Vcz:7'06v : vc2 _ 0.7 : 6.36 v, : !lx ! : 1.1.4n'ao'47 II

    , 5 .7* 10+100l

    : 0.039 m

    Ans: V, : -3.94

    x:.632

    OFF

    @l" ( + t)/,3.94 mA

    ON:+

    0v_'ur.:, ,r.*,

    = (-)3.94 V

    /6,: /9' X Saf

    N_ ,a\L: ( + l)r, = 7.03 m y Sa'

    -+

    Ex: 6.31: l.l5 m

    1.28 - 1.151.28

    lk

    OFF lkarr=o

    2.75 + --JL-( + l )0.47

    $vu : vu+o.l:5.5

    , l0-5.5" : 0.45 m

    @/.,.",, : lu l,: 4.8 - 0.45: 4.35 m

    : 1 : 9.6 aq 30.45

    : 7.03 v> 5 .'. Saturation

    v -=V cc - O'2

    1 + 4.8 m

    v_-vcc-o.2I

    = 4.8 V1, 4.8 m

    +5V

    +5V

  • Exercise 6-8

    Ex:6.33

    , Vcc _ Vc

    =>v6: 10 -8 : 2.0vn.: o:Je = 0i2: YcE Swing : 2.0 - 0.3 : 1.7 V

    Ex: 6-38

    _ 10_ yc _.25

    -.120 V/V

    vb.

    v"t

    R

    l0 k1m

    = l00

    . V-^ ^*

    = lV,,| := _z : lL

    V ",.ll : s..r .v

    l2

    Ex: 6.3

    ciuen, g- : Jic I--'c=c

    n-:r:lm:4om/vv 25 mVA : 1-:: = g^Rc

    :-40 x 10: _4 V/V

    V6 : Vr, rR6:15 lxl0:5V

    Nc(0:vc+Ndo: (vcc cRd + Av1'be|)= (l5 _ 10) _ 4) 0.5 sinr:5 2sio(t)

    ibQ) : R + beQ\= l + 2 sin , ()

    Er: 639

    But /c :

    165 1llV

    "t

    Ex: 635^

    Ex: 6J6/c : .5 m (conslan) = 5 :2

    /. 0.5 m 25 mV

    : 20 mA/V = 20 m/V' .5 0.5"5020

    = 0 :2.5mB 5 2oo'" s- 20 20

    : 2.5 k : !0 kf,

    Ex:6.37:10 /c= 1mAn : -]-g = z111 m,l V

    25 mV

    ':-: ]!9:z.s" 8- 40r : ---- - 25 " +]

    lse_

    -

    0.5 m25 mV

    : 2o ml

    oe: g. : figien ic : i/,:'"'.()

    and r. : -L

    : (g-r.)i

    +t5 v

  • Exercise 6-9

    E: 6.40

    + l0v

    vc

    ic7.5 k

    chage Rc to 7.5 kvc= -10 + o.92 x 7.5: - 3.1 vu :9 : g.R,

    : 36.8 x 7.5:276N

    :276xlbmV: 2.76

    Ex: 6.41

    /6:1mA

    r- : llQ : o.qs rnr' lIl": | :0.0099 mA" |lVc = lo_ 8 0.99 : 2.18 vV : l0 x 0.0o99: _o.9 - -o.l VV: _0.1 _0.7: _0.8v

    ! = lq. ,nv0.25

    l : 2.53 k39.6

    f : tol - 0ss

    , :v

    :

    v^ :c

    V)

    Rys

    ltI

    t : #tt (-)s.(.oltR.ll R.): _,

    - r_l39.6 (3.s5) : _76.2 /

    r, ll n. ll n. , 3.35il& _ 4.oo

    hus effect of ro is - 3.9%

    x6.41(2'lAro : - g.(roll Rr)R6 : Q6ll R4')

    8'RoV - R^ _ 'Rr+R.R"R'

    "^ Ro* R'.. (rol| R.)R'8. ^ a; ') + R

    : - c^Ooll R. ll R.)x6.For/a:1,4

    n : , : !- = 41 ,,o,7 v 0.025,-: = !: z.s"s-,^: V^ :]!9 : lrn" l, R11 : r. : 2.5 kAvo = - c^?ll Rc) = _,0(5 ll 1)

    = _97.6N

    Rs

    ),

    l l,*'":

    I 1""Rc

    +lv

  • Exercise 6_l

    6,42 (cont.)

    1: R,* : 2.5 :L,s Rs+RN 5 +2.5 3o ' | .o = _1 x sz. : 32.5 v/vlrs us ul 3l^l _ A-^' - :z.s _la _ .q

    lN)

    For /c = 0.5 m and Rc : l0 k

    s.:ffi=2omA/

    ,_ : ] : s. "20,^ : ]@ = urn " .5R,': r,:5kAvo : _20(2 k |l 0k)

    : 190.5 vr'R9 = R:|| r.

    : 10k|| 2k:9.5k

    . _190.5 5 5+5: 65.6 vr'

    1;'' : 'o : ! rs. : _l2.8v/v,,,2

    'l : 5 = 1=i,.'": I.v/. 5+5 2 "''

    li'ol : zz.s x lom : 0.33 vEx: 6.41

    R,"==r.+(+l)R

    Vs _ Rs+r"+(+l)R

    ' R., Rr" l"/(+ |)_,*Rrn&q

    ,,s:1:1*161*--{o l0 5/l0l

    = " _ ]l . = o._,s k - .]5o r}' l 0l

    R1 : 5 k + ( + 1)0.35 - 40.4k{'

    - lrol1 f. l R,-.) t x loU R*-R" _

    l4oj: - 19.8 V/V

    x 6.44

    n : I, = --]_: a."v 0.025,-:L:]!9:z.s'' 8- 4t,.. : .'" . -25 (t' +lR,*: r" = 25Ao : E^oo\l Rc) - .Rc

    :X5:2V/V

    A: Anx- = Ivr)+)c, _ R," .e,, = ---?L x t' Rs+R'* 50 + 25

    : 0.5 V/V

    Ex: 6.45Rs=50

    R.., = r : !: zs mv -.nl, l,=+' = 2515n: 0.5 m

    Ao = +9nRc:2X5 = 10 v/v

    c.,:!xA'':4ol'2+,4u : 80 : g.Rj.'. R;: so/2o: 4kx 6.4

    P nser 30

    ib : !!_: and o - + g.v oR L

    - , (g.vn + ihRL

    b

    -

    r

    R,:1: r.+(+1)R1

    i"= b

    *1-

  • Exercise 6-11

    =0.5+l0l:101.5kG : |fR1 moed, ro: co]

    R^ = "*R, _ .5 + 1o=9 M " +l loln _o_ RL ''v ; Rr'R':lo4+l-

    x| 6.47

    V.r: 12

    : 0.995 m2 + ':.l5

    : 0.995 _ 0.984 X lI

    t.r %

    Er: 6.,18

    o

    0.91 V/V

    Design I

    : 1R=3k

    ^ 80 x4"8' _ 8 +40

    Av : s3 /6gien ... maximize Rc' Vt '"Vg = qRg}2+0.3+IR

    v--:|2x="" 80+40-: !_91 : t.t m' 26.7.

    ^

    l0

    :501. : 3'3 = l.04 m' 26.7.

    ^

    -t 1l5l

    qo ch^'le : l'M _ 0'9'17 X )-l= |o.3

    Design 2

    : 00R, = 3.3 k

    R-" = 8X :2'61 k" 8+4v"": ffi:

    vc: v+o.4+2: +2.4

    ^ Vcc-Vc lO-2.4"._-T-": ' :-]-m," + 10l

    R + Rr,/( + 1) RE + R"/( + )

    : 26'' k

    : 0.99 mA4-O.726.1 . ^-

    Rr+Rrl(+ 1) = 4.3kFor independence from , set Rd : o (oK for cs)+Ro = 4.3 1Yc(min) = YE+0.3 V = -0.3VVCQ : V e(min) + 2V : +10 V

    - = Vrc V.o - |0 : 8.48 k' /. .9Ex: 6.49

    +10v

    Rc

    2A

    : 10o

    vt0t: l501- : 3'3 = 0.984 m' 2.6. ^^

    - + -t.J

    5t

    :15: 7.6 =

    1

    0.3 v

    7.6 k

  • xercise 6_12

    1,_ l0_'7 0.5_.4_ 2: _2.9" l80 l 7.5( , |) y. - l()s _ q'92 '1:lolxs ,r:ffi: l

    - 1.002 mA t" I myc : lo 7.5(l. 8- = i: ffi : 'lrv:2'5 .-:L=|:2.5k}'' R- m

    6.50

    vcc = 1 =zs

    6.49 (conL)

    R" _ v'_ v" _ lo{2.4 o.7) _ 17l.7 k" l"Usig 5% resistors:R.' : 7.5 k & = 180 ko.'1 + BRB Rc Vcc: o

    _v v = 10=l R,= lkR,. : 7.5 kf'g : g/(p + l): / 1u'

    : 0.01 mV: 0_ 13R9 = _lVVg: Vs O.1 V: -1.7Vv-_v-- _-L7171.5 ! 2'51

    +|

    R _ v-_o'7 + vL = t9.3 = l9._] k*,,. I

    Ex; 6.51Refer to Fig 6.5lIc : (t m) r1r: 0.0l mVc : !0 _ 8 k(l m; : .27 = lk X (-o.ol ;) = '1 vV: 1 .7: 1.7v: l00: Upper limit.9 v cc _ Vc:8vower a|ue +v_ v'c: o.4v (wherev; = -1.4v)

    Swing: -1.4 -2 = -3.4 V : 50: upper still 8 Y lower+ 1, : 6.9196.O so Y, : - 1.96 Vl.96v _ 0.4 _ 2: _4.4

    : 2: uppe. still 8v'o'ver + 1, : 0.005 m so ys : _.5 v

    Ex:6-52Example 6.50

    vo

    RL

    R: r. n"= r"lln,

    R,::r":2.ska

    R," : R, ll r" : 1 |1 2'5 : 2'44 kAuo ! 8,Rc:_4oX8: 32oNRo: Rc: 8kAvo: -8^to ll Rc ll R.)- 40x 3.5

    : l19V/VRo = rol Rc = l|| 8 = 7.4kAvo : - 8.Oo ll Rc)

    : _4o '1.4 = '296N

    ^R,*.Rc+R;"'R"+R,7

    = ---::-:-:( _ 2| 6------5 +LM '74+5

    = 39.1 V/V1,.: Rs*Rri/: !5mV- R,"|;' : cn

    :i19.1 x !5:586mV

    Rs

    ),, *:

    r rI,'$:|- v"|

    Rc,

    r 1 i

    'l

  • Exercise 6_ 3

    Ex: 6.5-l

    Example 6.50

    8.: 40 m/r' r- : 2.5 kro: lk : oov &: 1kR,;*:5 k &:8k &=5kR, = rtr + ( +1)&

    R'" : Rrll R :4XR.ie:20k

    "' R. _ 25 _ 2'5 _ o.22 k _ 223 ' 1l

    ' _8-Rc (8)luo: ii-,J:,- ffi _ _.12v/vRou, = 8 k

    a, _ _Rcll R. _ _sKI| 5K - _D.4' r.R 25+223

    G,, _ ( Rc i| R) = - 9.9 V/V' R"i* + ( + 1)(r. + R)oR c,, = R," y 1,, = 2!3 7 p,4' Rtie * R 25 oe: \hout &: Av : _g^(Rc| RL)

    : -l23N

    ih &:V.i :5+20smv 20

    /o &:

    : i- r",. = 6.25 mv

    -r = s,:::ll ll-]+y. t5 m5mv (2.5|| l) l-'J|vr| : lv,l x Av : 512.4 : 62 fi

    Ex: 6.9g.:40m/v = 1ro= lk : l0or,:2.5k :0.99r,=25 1.:lmAR.::2561Auo : + g.(Rrll ro)

    :4010 3x111 t): _296N

    n.", = R. ll r : '1.4 k, = +g.(R. || R' |l ,o)

    :x3:'l2ott:tr=r"is Rsig + r.: 0.5 v/v^ (R. |l R)"'_ R"--: 0.6 v/v*_-_ : (Rc ll R)''" GR*;. : 54

    5(m + 25

    yr vo

    R,

    Rl

    B c+

    Rs E*"JLt.t: lRu

  • Exercise 6-14

    Ex: 6.55

    RJtnt

    B

    ,.R,o = : r"+(P+ X/o|l Rr): 0.s + (10r)(2011 r): 96.7 kf)

    R'* : fia ll R,, : 11 96.7 : 28.3 kc,, : vo : vt "vo' vs v\ vl:R,*,

    Rs * Rl: 0.796 V/V

    (R. |l Rs) + ( + l )(r. + oo||) RL)

    ^40uvo :

    --

    \

    ( + |)(roJl R)

    .- : lQ : s ,, 5m,^ =Vo =]@: z" I, 5m

    ib : b::-9 and yo = ( + l)i,(r, || R.)

    . ' _ V l( + l)(ro|| R)

    ," l ,lo ( l K.|Llo )(5E . 5 20 K)l

    Gvo = 0.8 V/V

    R.,, = .oll (r.+tRr|| Rs])/( + l): 20 || t0.05 + .o79] k

    -84,, V, x lroll r,1

    For RI(k) 0.5 1.0G'.(vr') .68 0.735 0.765

    5m

    Vc

    20K

    o.l ./ 0.950.5

    2.0

  • Exercise 7-1

    Ex: 7..1 (a) The minimum value of 1, occurswhen

    Vo,, = o.2 and U :0.1,thatis

    l^ = \ ^c.'rviy 1O.8 AThe maximum value of ID occurs when

    %,, : 0.4 V arrd : 1, hat is

    ^-: \.c.'!vLv:3.l mA(b) For a simila range of current in an npnrasisto we hae

    1c.,, _ 3.l mA ' r"uu'^^''u'1cni 0.8 A

    Se'mia/v

    (v q-"' - v g 6^in) l v' _ a'' v,

    _ 3.1 mA0.8 A

    v,, : vln(ffi) and v.=(25) mv+ V"' : 2o1 m

    Ex: 7.A.2 Fo an NMos Fabricat in the o.5

    m pfocess. lih _ lo' ve wan o find he'rsconductance and the intrinsic gain obainfor the followig drain curents: ( : 0.5 m)ID:(ro) *o,r^:f*4!;",,,: (l9ol 4'-= J2y l90x l0 t -02 ja:-v,.:2- _'%iot'= l v

    intrinsic gain

    :8^r,' = o.z}4 xlM:2lFor ID : 1 A \e hae:

    For/: 1 mA

    : JzxrsXloX1-z!-v,.:q!. _ 20 x o'5 - l kD lmA

    c.,. = 2 + X 10 k : 20 V/V

    E: 7J For an NMos fabricated in the 0.5 mcMos aechnology spcified in Table 7.A.1 ith :0.5 m' W - 5 m. and V6y:o.3We hae

    o- !p,c.')v'"" =l ,* 4x-xo.3']' z'' "'L "' 2 2 0.51 : 85.5

    '^ = ,:

    2 X_8. : o.57 mA / v

    ,^:ui'=20Xo.5-!?k" I' 85.5 A _A. = g^r. : 66.7 Ncr,: wc.' + cou

    1:: 5 0.5 x 3.8 + 0.4 5cs, = 8.3 f F, C: Cox| : 0.4 X 5 :2 fF

    o.57 4r- - 8'2 lCn ' C" 21 (8'3 a 2'/, : 8.8 Gz

    Ex:7.1For his problem, use e4. (7.1):

    {"'1vs 7'": l0,For ID

    '._ F-\:"DX 19oX X !0on- : 6.62 ! - 6.6 " v- v,.:yo!- _ 20 x o'5 = l k,D 00 g.r. : o.62 1 166 1 : 62 /

    ".r..(r),,

    ,8,/5(1(1 , = O.28 mA/Vusing eq. (7.15):

    " = ,'^ff-&

    Ao : 5oSince g, vaies with o - o *itn ft

  • xercise 7_2

    ForI

    1, = 10O A ==r g. : 0'r8 rn(#)' : .89 m./

    !

    ^:50(-!q.)':58/V" l/For 1, = l mA:

    !,l\2

    . = .28 mAlv(7.J = 2. mA/v

    a_: sl.00'l, = svlv" \r,,x: 7.2

    Since all transistors have the same

    W _ 7.2 U-rol 0.36 m'we have = : la2: /or : l0o A

    : /'; -^^{].,.),*

    -^)

    : L24 mAN

    .' v"L, _ 5 v/m0.36 m) 18k!!''' o .l mA

    , ^ _1voo|L, 6 v/m (o..1o m) = 2l.6k'n' n .l mvolage Gain is": g", (, ll .-)A'= _ (1 .24 mAN) (18 k l| 2l.6 k): - l2.2l

    .,:/=tooAn ': r' : QJ-. = +.e"nvv 25 mvR _ r,= , _ l = 2s"' 8,r 4 mA./V, :Vo: 50V : sfflk''' 0_l m,":|v: 50 :50k()"' .l mAo : 8',' r,, : (4 m/v) (500 k) : 2 v/A': _ g^ (r. || r., ) = _(4 m/V)(5 k || 5 k) : _ l0 V/V

    r: 7.4 f L is halved: 9-E!. 62

    1v,1 : |v,,|.,, y.l _ s lom (0'55 rn ) : |..]75 '2

    - lyol lvol 2 (t.37s v)," - v-, (o_1 \r,llo ): 126 k

    Since , : \',c"'l(Yr)u*((' - ffi)

    Ex: 7J

    w_'

    2 (l0 )

    Y : z''

    '.': ]z *"c.'(l), ';'

  • Exercise 7-3

    x: 7-5

    Vo = l.1 vYDD = +1'8 v

    Q

    vor = 0.8 v

    f all transistors are identica and he gate votages

    are fixed, |Vrr] :0.7_0.5: .2 vVor: Vr.- = V62 V,n-Von

    = .o 0.5 _ 0.2 : 0.3 vthe oest yDs2 cangois |vru] : 0.2 V:. Vo-in : VDtt + VD.2 = 0.3 + 0.2 : 0.5 Vsimilaly, ysca = Yscl : 0.7 VVo = Vs: v+v||+|vo

    : 0.8 + 0.5 + 0.2 : 1.5 VVsDj can go as low as lVoul, so

    Vo.^' : Vo _ Vsr:'., = t.5 0.2 : l_1 v

    : 2 |l,Ay'

    ,-:Vn: 5 :20k" ID 0.25 mA(a) From Fig. 7.13,

    - I RL8- \8

    ^r ")

    ,q._ : | + R"' 2 m"/ (2 m/)(2 k):5)+3--+o

    40

    R:lM:R,_:50o+ l M: 25.5 k'" 4|

    R" : l0o k:a,-:5+ l k _ 3 k'" 40R = 20 k:

    R.- :5+ ?9_Q = l '" 40R: 0:

    R.-:5+g = .5 k'" 40(b) Fram Fis. 7.13,Ro: ro+ Rs + (g.r.)RsRs: 0:Ro : 20k+0+ (40)(0) : 20kR" : 1k:Ro = 20k+ l k+ (40X1 k) : 61 kR, : 10 k:Ro : 20 k + 10 k + (40)(10 k) = 430 kRs : 20 lc:Ro = 2o ko + 20 k + (40X2 k) : 8 kis :' l0O k:Ro : 20 k + 10o k + (.0)(1 k) : 4.l2 M

    Ex:7.8 g-, : E^1 : B^_ /o _ lA: i m/V

    V nu o'2 l22

    t'|:rr2:ro

    Flx;7.7 s^: ta:2

    0_25 m'25 l2

    x.7.6 8^1

    = lo :|v o

    2

    |:8.2=8.=8^=8.0.2mA _ 2 m/v02 2

    fn=foz=r:to4:r

    : lyol : 2v :lD 0.2 m

    Ron : (g.2.2)r.1 : (2 m/v)(10 k)'?:2 kf}

    R = (l r,,)o,^) = (2 m/v)(lo k)':2 k

    R. : R., | R. :

    = _t{',.)"A : _2 l

    l0 k

    : -}t{z ..){r )]'

  • xercise 7-4

    -V;- 2V - ,nU,,ID 0.1 mAso, (8-r") = l m/v(2 k) : 20(a) For R,- : 20 k'

    -' = R, *',, _ 20k + 20k _ |.9k"'' 1+e-tr,,7 1+20.'. vl : _8.l(r,I || R-2): _ l mr'(2 K || 1.9 K) : _ I.74 v/vorf we se he approximaion ofeq' (?.35)'

    , =- R. _ | 2k- l"'n' 8.r..,., %' 20 ./v= 2k

    hen.

    Av : l m/v(20 ko 1l 2 k) : - 1.82 v/vEither method is coect.continuing, from eq. (7.31),

    A : gmr|(gmrr.rr,,r)|| Rrf, : _ l m/V{[(20X20 k)] l| 2 k}: 19.04 /vA''' = Au _ 19'04 = 0.5 Vr'" Au' - 1.82

    (b) No, for R, : 4 k,- R | ,lOok , I"'z = |^}l,-;' - 20 - l.A/v:2lkA : - | m/v(20 k |] 21 k) : - l0.2 v/v

    A = 1 mA/v{[(20)(20 k)] ]| ,0 k}= 2 v/vl.^ : Au : :?Q9 : lq. vlv" Au, - to.2

    Ex: 7.9 The citcit of Fig. 7.14 can bemodeled as

    Where G-"' I + g-Rsand Rn: (l + g.Rs)r.,The open-circui (no Ioad) volag gain is

    A'= -G-Ro = , 8. =.(|+8,Rs)r,,I + g-Rr

    so, the gain remais the samef& is connected o he outpt',4, : #;t( + g.Rs)r.,] || R1.: 8. ( + grRr)r,,R

    l + 8.RJ (l + 8Rs)r,, + RL

    :-r." R,( I + g-Rr)/,

    Ex: 7.10

    (a) D|: and D1= since yovt = Vo, : 0.2 v ve have

    ,- :','''(),u""" , ,o' | "c '"(Yr),v""",

    : b"(),4

    o-+

    vi

    1

    ,, (w\ "(w\'" |l, "7,,,(b) The minimum olage allowed across current

    source /' would be |vo = 0.2 if made witha single transisto fa 0.l yP signal swing is o beallo'vr'ed at the drain of o!, the highes dc biasolage ould be

    v "' |vo0.1 vP = r.s - 0.2 1(0.1)

    : 1.55 V(c)vsG2:|voyG"2 can b set at

    + lvtpl : O.2 + 0.5 = 0.7 V1.55 - 0.7 = 0.85 V

    Vno = +1.8 V

  • Exercise 7-5

    (d) since curret sorce 2is implemented ith a

    cascoded current source similar to Fig. 7.10, he

    minimum olage requi.ed across it for propr

    operation is 2Vo : 2(o'2) : o.4 (e) From pans (c) and (d), the allowable ange ofsignal s\ing at the ouput is from 0.4 to l.55 v

    Vov or 1.35 Vso. 0.4 V < Vo < 1.35 V

    Ex:7.11 Referring to fig.7.9,Roo : (g.ro)o|| r.3) andR". : G^z'o)Q|l r"'')

    f oI and oa can be selected and biased so that

    ro, and ron are very high and have insigificant

    effect (/o >> r-) hen,

    R"^ = (g.rrot)rnt

    Ro : (gfiro1)r.1

    since 8.r. : ,Ron:9:ro:Roo = 9rro:Since i, : -g.r(R-ll R"e)'|v.",| : g.r(9zror ll ,.rr)

    Ex: 7.12 For the npn trasistors,

    v-,' occurs hen ol and o4 are selected ad bias

    so that ,o1and ro4 are>> r

    Then, Ro. : (g^7ra2\ro2 : 9zrozR.' = 1(25 ko) : 2.5 MRon : (8^ro')rn : FroRo : 5(20 k) : lMoFinally,,,", : _(8 m/v)(2.5 M || 1.0M)A,^'' = _5114N

    Ex: 7.l3 - = 1/.l = J.4 -- 1 mA/v /) m' =9 = l : z.sR- mA/v' :Vo:10V = t/. lmRefeing to Fig. 7.20'

    R.1 r6fr + s.(R.ll r.)l

    lr -1-: .z = fi:'., = '.,

    : Lgr=

    lv..l :

    0.2 m -

    R" : i kl + 40 +(o.5 k l 2.5 kf' R": 176.7 kwithout R. (hat is, /?, = 0),

    R, : rr: 191

    Ex: ?.14 Fig. 7.21(a)v,rot:ro2:ro=i: 50 kf)

    .l7;

    "6(r7,),l -A)

    25 mV

    1 : tu.s 8 m/v

    5V : zs0.2 mA

    5V _0. m

    From Fig.7.l9,R"^ = k,2r6)Oq1ll r "2)

    = (s m/v)(25 k)(25 k || l2.5 k)R"" : 1.6? Mf)For the np tansistors,

    c^':c.o=:vr =,ro:

    *:

    c., : 1#' G^: g. = 1m./v

    " : lg1 _ o.lA:4mA/v 25 mV.-:-9_ = 1 :us

    8^7 4 m/Vssuming an ideal cuent soulce,

    Ro : (8'ro)(', o|| r oz)R" : (4 m/vxso k)(5o k || 25 k) : 3.33 M.6 : 'G^R6 : -(1 m/v)(3.33 M): _3.33 X 13 v/v

    0.2 mA -25 mV

    50-8 m/v

    8 m/V

    6.25 kfl

    roj: ro4= H: #h: '*nR", : (.:rlXro ll r.:)

    = (8 m/v)(2o k)(20 k | 6.25 k)

    R., : 762 k, : _8.l(R"" 1| R"p): - (s mA/v) (1.6? M || .762 M),, : -4.186 Vr'

  • xercise 7_6

    Fig. 7.21 (b)

    From part (a),

    g,'1 = g"2:4rA1ro\: r1 = rr,: rr:50knl : to2: r" = 25k

    G.=gq:4mA/FromFig.7.19, Ro = (g.zro)Oorll ,

    "z)R,, : (g-1ro1)R" so,R" : ( 1 m/)(50 k)(4 m/v)(50 k)(50 k || 25 k)R,, - 167 MA,n = _8-R- _ 4mA/v(l67M): _668 X 13 v/v

    E: 7,15 n the cuent source of Example 7. 5we hae 1() : 10o and \e wan to redcethe change in output current, 1(), coresponding

    to a 1 v change in output oltage' yo, o l7. of

    o.

    Tha is r, _ V o - 0.0l /, = !Jfoz roz= 0.0l l ,o.:JJ:161' |

    ,o^:V'o'L-tM:20Xa' Io l- l) vr- =-::rrm

    20 V/mTo keep yov of he mached transistors he same

    was ha of xamp|e 7.l5. 7 of he fansisorshuld remain the same. Therefore

    W - l0m=W:50m5m lmso he dimensions of he mach ransisors 0!and 02 should be changed to:

    W:50mand,=5m

    Ex: 7.16 For he circuit Figure 6.7 ,/e hae:(w / L\,

    z : n t'_;-_::-,. :

    w / '\.nd . : ':-----------:' "w / L'4

    . (w/L)\*'''@77'

    Since all channel Iengths are equal

    L:Lz:...:Ls:lmand

    x1'1, : l0 A, 12 = 60 A' 11 = 20 ,: : 20 Aand /5 : 80 ,e have:

    w' w' . |'' "'"--+-- _ -:-L _ - - 6' ^' ' 'y w | /*r. |o .,_W., _2-1,' _,R'' _ r-* |o -

    l.=t'\-\=!=:+' 'Wo w I 10n order to allovr' the voltage at the drain of02 togo down o within .2 v ofthe negatie splyvoltage we need yo2 = 0.2

    l' : \ ^c,^(l),' o", : \|'(l),v' -,60 : ;2$(}),orr-

    [) _ Iz - _ l5=+w1_ 5\L2\ L 12 2 t (o.2)'y, - 15m. _ u=w' = _ 2.5mwt 6w-*' _ z=w\ ' 2x W,

    _ 5m

    n ordr o allo the oltage at the drain of5 ogo up to wihin 0.2 v ofposiive supply e need

    vou, . = ,(l), =v"o"'

    l : io$(}).o.zl'=l.y] _ zx - - 50--eWs 50s\ ,, 80 10.2;2Ws:50m

    Y: = o.- v. _ lqJ*m _ l2.5 umw " 4

  • 0._5 m - Inr (,+2_o.7)l+(2/l)\ 50 ,/

    /a6p : 0.5 .Affi : 0.497 m1^,- =v- vuu-p = vcc-v"tR /"..R : 5 0.7 : 4.3 .s

    0.497 m 0'497Vrr,n : V,.n.n. : 0.3 VFor % : 5 Y From equation (7.74) we have:

    l = n' (, +V"_V"'\' l + {2/)\ vA )

    I _ 0'497 (l + :-qJ) _ o.5.| mA" l + (2,i |)\ 50 /

    Exercise 7-7

    Ex: 7.19See next page:

    Thus:

    | : 2.5 q"m' Wz : 15 m, lv] : 5 mW a : l2.5 m and l{'' : 50 m

    Ex: 7.17 From equation (7.72) we hae:

    '.: '"..[;fuJ{'-'o)r\

    . = l mA|- ,, l(,' #) - t.O2m\' '-i_/" : 'l.02 mA

    Ro=,o,= = #* =98 k : l ko

    Ex:7-18

    Fom eqation (7.74) we have:

    l^: Inr'r rtVo-V\=" 1+ t2/9)\ V^ t

  • Exercise 7-8

    gnoring he effec offinite output resisances' wehae

    : ]z : ... : / : /cOllr'

    rQ"u, * : /r(*)

    1 : /r",r,* u + ... + N

    , /ar"., c, ' ."

    /tl, = ,co*,,. + ,.r*,r,

    - /" aa-l.oRF ' - ryl]

    Thus:

    For an error not exceeding l0% we need:

    /^.,-a/r(| 0.l)t + il-j-.1

    /t ?o.9r".' l >0.9!',ry+l l_+

    - r + N-1-1 = I = I + {-L-.1 = I.r r0.9l-l

    = o.It=9iv + l S 0.1 / + < ly'< 1The maximum number of outputs for an eor notexceeding to be lesstha 10% then we need N

  • Exercise 7-9

    Ex: 7.20 Refering to Fig. 7.32,

    Io : Io : ]ol = o: I*uo = l Since , : \'"c"'()v'."

    lz a l v]l(J)

    = 0.23 vThe minimum ouput voltage is

    v*'+ 2vo" = 0.5 v + 2(0.23 v) = 96 vTo obain the output resistance, Ro, we need 8.3-

    o ' o' _ 2(0. m) _ 0.87 mA/ vvov/2 o.23 V

    : v(L) _ (5ylrn)(0.]6 m).o2_ o! h _ _-

    o.l ma: 18 k. From eq. (7.77)Rn- g6rorrn7: (0.87 mA/V)(t8 k)'?: 282 k

    Ex: 7.21 For the wilson mirror from he equation(7.80) e hae :

    /,: l : .ggg/r ' + 2( + 2)

    Thus !!:-sd x fiO : o.o2%

    whefeas for the simple miro from equation(7.69) we hae :

    1" = 1 = o.q1 l' + ?

    "n"" ln _ *or| x |: 2%1*oa

    For the wilson current mirror\e hae

    R- =pr. _ lk_5Mandtor2

    the simple mio R, : r, = 1 kEx: 7.22 For the two curent Sourcs designed inExample7.6. \re hae :

    n = , : l0 _ o.om-ov 25 v

    "^ _V^ _ l0v_ |o M..' = . 25ok" c l0A 8.

    Fo the current source in Fig. 7.37a we have

    Ro: roz = r,:10MFor he crrent sorce in Fig. 7.37b from equation(7.98) we have:

    R.a tl +g.(Rrll r,)lr,n Example ?.6, R, : R1 : 11.5 1 ,therefoe.

    ..- l .a l t.s ll 25ok)'loM'-'-L - v ',J

    =R,: 54 tr1

    "',"'()

  • Exercise 8-l

    Ex:8.1Refe.ring to Fi9.8.3,fR, is doubled to 5 K'

    Vo : Voz: Voo_ Ro

    = l.5 - 0'4 mA5 l j.s

    v2

    vc.u': v,+vD:o.5 +0.5: + l.0Vsince he currents /D|, and 2 ae still 0.2 mAeach-

    Vo, : 0.82 VSo,V.r.,n = yJs+ yc + yoj

    = - 1.5V + 0.4V + 0.82V = -0.28VSo, the common-mode range is

    -0.28 V to 1.0 V

    Ex:8,2(a) The ale of 1,ir' hat causes l to conduct he

    enire current is ^/Vn,'l

    "D x .:t : .5 v

    th, yD : vDD xRD= 1.5 - 0.4 x 2.5 = 0.5VVo=Voo:+l.sv(b) For o2 to conduct the entire curret:

    :-JiVov__o.45then.

    Vo = Voo: + l.5VV.,2 = 1.5 -0.4x2.5:0.5V(c) Thus the differenial outp range is:

    VD2- VDt.from 1.5 - 0.5 = + I Vto 0.5 - 1.5 = -l V

    Ex: 8JRefer o anser tabe for Exercise 8.3 where val-ues were obtained in he follolving way:

    v^'' = ^/I/ w/''')L = L v n2

    ":

    l "'r' ' : 0.l --l ll , = 2 ^' "loj\ Vor )

    EE: E.4

    ':'= -8 mA : 0.4 m

    ', 2 " 2(/ m)'- _ l"_ J;r(,.,v|) _ -''/^'7'

    "-_ o _ o.4m(2) = 4rnA/vo/2 .2 v

    ,^:V^:20v : s" lD 0.4m4A1 : g.(Rrll re)o : (4 m/v)(5 K|l 50 K) : l8.2 V/V

    Ex: 8.5with 1 = 2 , foral ransistors,

    ^= ! = 2P: I,,.a.'22L : 2(o.l8 m) : 0.36 m

    - (10V.zm) (0.36 m) :,uo.l mA

    + Voo

    Ro:5k Rl=5k

    Since 1,, : lo, = L^ r^()r*' ,

    (f),: (), = #tr}2( l00 l

    (4 A / v'?)(.2 v)'

    (y).: (9. :;#r2( l00 A) .n

    ( l / v'?)(.2) '

    so,

    = (t_4J(2) : 1m/V,

    ^,0o,l1 ,o) : 1( m / v)(36 K || 36 )18V/V

    " : \'"(l)oul' so^t

  • Exercise 8'2

    ,o : |v _:

    The drain crrent for all transistors is

    ' : : '*'*o : '* *o., = (10 V/ .)(!,36 m) _ ,u*nRefering to Fig 8.12(a),

    Since D : \'^c"'()v""f foall NMoS '. = p"'lus''t---------------

    = J2(0.2 m / v')( |0)(0.4 m)

    Ex E.6L : 2(o.l8 m) : 0.36 m cMRR(dB'= 20 |ogl0 H -'oI"lo (ffi )

    = 86 dB

    Ex: 8.8From Exercise 8.7,

    W/L: l,"C.'{o.2 mA /2)," = :=

    08fl : o.a..

    ,5 0.7t,

    nC.'(V o"

    rw\ rw\_ |)._ \),_ 2( | )

    4 A /2(o.2)2

    8^ = 4 mA/sing eq. (8.64), and the fact that Rss = 25k

    ,"** _ (2 "'Rss\ _ 2(4 m/y)(25 K) : 20, oo('\ 0.0t\c-l

    cMRR(dB) = 20log lo( 20,0) = 86 dB

    Er:8.9

    1k : 4.3 m

    +0.7 v

    v61 : -5V

    +0.5V

    Exr 8.10

    62: o.7 ( 5+4.3xt)

    lk 1k

    - 5V+-43 mA(:l)

    _25_ V

    (g),:(g).=(y),:(:),

    = 2o : 2(tA) :.npC.'(V o)2 1 p / v'?(o.2 vf

    For al transistos.

    ,q:+P : 1m/VFrom Fig. 8.12(b),

    Ron : (9616)16r: (l mA/V)(36k)'?= l.296 aRoo : {g-5 r65)rq: (l m/v)(36 k)'z= 1.296 MUsing eq.(8..18).

    Ao : s-, (R..ll R.,): (l m/)1'296( M|| l.296 M)

    = 648 N

    Ex:8.7The ransconducance for each ransisor is

    g^: "q'1w ll"l^ : ! = 0.8 m _ o.o.o"22from (8.35), the differential gain for matched

    R^ alues is, _ Voz Vo _ n pV'"

    fe ignore the 1% here'Aa : 8. Ro : (4 m / v)(5 K) : 20 v / vFrom eq. (8.49),

    .'' = V.a = * R, _ (0.0l)(5 ) _ o.l v/vv"- 2 R'' 2(25 )

    +5V

  • Exercise 8-3

    c = c : l : z =: 0.2 m

    From . (8.66)'vcMfr'-vc+o.4= Vr. gR+o.4

    0.4 m

    = 2.5 _ 0.2 m(5 K) + 0.4 v : + l.9VFrom eq. (8.67)

    Vr' ^rn

    = -v+vcs+vVct -rn : - 2.5V+0.3V+0.7V:-1,5VIpu rage is - l.5 v o + l.9 v

    Ex:8.11subsifuting ig1 * i62 : / in Eqn. (8.70) yieds

    !:2

    Ex: t.13

    v84

    I

    , * "(z t)/

    /:20oASince>l,

    I-'-^^-/ 2_22l

    ^:o : !:v

    Voz

    Vz

    l0o

    l0A:4.zv25 mV

    lv^lc

    50 k

    25 mv : o.25 k.1 mA

    0.99 / :' B1

    D|\/

    B1 _ B2: _v. l"(s_ t)= 2stn(r / 99)= 25 ln(99) = l15 mv

    E:8.l2(a) The Dc curren in each ransister is .5 m.Thus yB for each wiIl be

    V -. = o'7 + 0.025lnr)"' \L/= 0.683 V.+=5-0.683= + 4.3|1.nlo : 0.5 :2ovT 0.25 v

    (c) jc : o'5 * g.13r,= .5 + 20 0.5sin(2 X r)

    = 0.5 + 0.l Sin(2 X 1r)' mAicz = 0.5'0.lSin(2 X Ir), m(d)

    61 : (V66 * 1cRc) _ .1 Rcsin( 2rr X l)0)= (l5 _ 0.5 l0) _ 0.l x l0sin(27rl0|)= l - l sin(2r' 10r)' vv.2 : l0+ lsin(2r'X 1000r), (e) 62 _ z., : 2'sin(2 Io0,), v

    (0 voltage gain =c_ c

    7A1 ' 7'A'

    = 2LP"uk = zn vl.l vPeak

    Rc:Rc2:Rc:ro

    _ 10v :l)kl

    . _ V, - IOV 7 _ 2 - _'

    ",="r:t':i:Since R.. >> r",

    |A =R.l' ,o - |0 || l K _ 2o v/vr. 0'25 R',=2r-.-_- | _ z5l" 8^ 4 mA/YR'o : 2(25 K) = 50 Kfthe otal load resistance is assumed to bmismatched by l%,

    l -l = R.

    = (0.ol )(l0o ) _ o0|2R'' 2(50 )

    cMRR(dB) .: 20 loc,,, lj:l

    ::86d8

    Note: fonly the oad ransiso$ are mismatched.andsince-1.

    +Vcc

    Il=zrl"

    V

  • Exercise 8--4

    u _ _ Rrll Vo u _ _( K || l K)yl..'ol 2Rfr. r,' ''- ,(5o ) , o25 : _o-499 vi._,, _[(Rc + R.)|| r"]v'-"o= 2l;;T;7-_ _(l.0l)t K]|| l.v = l5(t|y.

    2(50 ) _ 0.25 K

    CMRR: l| _ 21,.l 0.50l 0'499

    :10o.00--)10dBUsing eq. (8.103),

    r*&R;.. : Rr. ---"- _ { l)(5o K)

    ro

    lK. l(l ). IK+2(5K)

    lR;.. : l.68 M

    Ex:8.14From Exercise 8.4:v*: o.2Using u. (8.l08) e obtain y due to & / RDas:

    ,.,: () (*)

    _ Q x o.oz _ o.)2 v i.e 2 mv2

    To obain y^. due Ayl- wlLUse n. (8.l l3)

    "*:()(#)- v^" : (92) x o-o2 = 0.2"" \2 t

    --r 2 mVThe offset oltage arising from vt is obtainedfrom n. (8.l 16)vs= vt = 2mFinally, from n. (8.117) th total input offset is:

    t(? *' (y!! ^+#)' * (',)'l'':

    ^/12 x ro t1'+ q2x 1o-r;2 + 12 x lo-312

    : i'" 10: 3.46 mV

    Ex: E.15From Eqn. (8.127)

    ,,, = ,.ie:*(J:256.f * ,1r: 2.5 mV

    l_ : 1 : l =s,,a'" 2(+l) 2X1l

    u,: u():0.5 X0.1 =50n

    Ex: t.16

    (w L),x ^C'": o.2m x 1:20 m I

    (w l L) x : 0. m x 2 : 20 m $since all transistors have the same drain cuent(1/ 2) and the name product vl then alltransconductances 8. ae identical.

    " ou _ ^!fiir -thus,

    : o'2

    " { .8 m-/2) 8.=;:-l-=*.vFom Eqn. (8.138)

    G-: g- : 4 m/Ro = r orll ron

    ,^' : yo: 20 : so"' o' (0.8 /2),^' = y-' = 20 = 50k"' lo' (.8 m/2)thus,

    Ro:50|| 50: 25kFrom Eqn. (8.141)

    : G'Rq: o"25k: lFrom n. (8.l48a)

    A-- | = O.OOsv/v-"- 2g-.Rr, 2x4x25

    1"rr = lAo| : l = 2.0{)l."l 0.5'i 86 dB

    Ex:8.17From Eqn. (8.156): :3"

    I/2 (-8 m/2)""- v, 25 mvFrom Eqn. (8.159):

    Ro = r nrll roo

    'ul

  • Exercise 8-5

    Vou Vo 1 V7l ='-2

    : lV = 125 k0.8 m

    A,t : G^x Ro : 16 x 125From n. (8.l62)R,": 2x ro

    -2x vt g =_ |/2)' "= 20 k

    2x25mx160

    For a simple cuent mior the otput resistance(thus RJ is r"'_,R"' _\ = |V - l25 k

    0.8 mFrom Eqn. (8.67):

    "R*

    ' -2 / |25 "'- _ l6i, la5 A : .OI25y

    - _ l20 lL MRR lJ tr5l

    Cr*^ : 160, 02 og0(160,) = l04 dB

    Et: E.18

    ^ l/2 lm/zU-:8m:':'-:-:=- 2) mA l v/2 0.5mA

    -) Roa = aro4 : 50 x 2 K

    R^. _ . ls : l, ?9L! _ 16 112

    From qn. (8.174)

    n, : [.

    ,^l| a']= (l0|1 10) M : 5 MAl: 8. x R': 20 50 = 15 v/v

    i.e. l dB

    Ex: E.19Refer o Fig (8.41)(a) Using Eqn. (8.178)

    .=(W'L\o(/2,'' (w / L')=1111 =

    (W/L)n r anl)

    thus. (lVl L) 6 : 2

    Using Eqn. (8.179)

    . = !! |' (w/Lt\ '= 11p :

    (w/L), ; 16112

    thus. (}v/ )' = 20o

    similarly for 0,, %a : 0.29 vFor q,trn: x920 y^''2

    yov6:0.105v

    a,2-=!

    a,

    a,

    O^

    50 0.129 V 0.775 mA.V50 A 0.129 v 0.775 m./vl0A 0.105 v 1.90 m/v

    (d) r", = 10/0.05 :2ko& = lo / 0.05 : 2 kn :10/0.1 : lkr" :1o/0.l = lk

    (e) n. (8.l76):A : _8. Qo'|l ,o): -775 12 ll 2} : _?7.5 yvEqn. (8.177):

    Az : g. (roll rol)

    oerall volage gain is:A' x l,: 11.5 X 95 : 7363 Vr'

    Ex: E.20Refe.ring to Fig. 8.42, al| /D aues are the same.so' '.|. : yct + /AR,Usig the equation deeloped in the ext'

    :2oy(b) Fr o''

    l : \,c,,'(l),v*",(0.8 m/2) : 0.129 V

    :20m

    2 k

    : l0 M

    r"_ffi"tr]n-- 2 ( l.l"

    ^E ,lzlll, l ,a, :0 l

    1rlrzn2

    = 5'21 k

  • Exercise 8-6

    8^:

    Ex E.21/,:p'C-: 1 pA12p"C-: AN2Fr Q."nd Q,:w L: 40 l0.8(as given in xample 8.5)

    lv oul :

    )lv oul".n : = 0.3 V

    then.

    2I" 2X9ou8.s'9:|v=_'-

    since 8. of o, o11 and o,, ae identical to & of and 0, hen:Y.,, = 0.3 vThus, for O,.

    o.1)2: 29' l 'lw/L)n)(W/L)0: 12.5

    i.e. (10 / .8)Since Q,, is 4 times as wide as Q,,, then

    rw\ 4xl0 40i,, _ ol _ ^s

    ( -1)

    v-,,: v,"," - v",.', : 0.l5 + 0.7 = 0.85 Vthus, y",1,, = vcs 2 + , _ yss

    = 0.8s + 0.15 - 2.5: - t.5vV on ''

    : |Vou"| = 0.3 tVcsl: o.3+0.7: lvVe : _ 1.5+l: _0.5VFinaly'V.": V," - v*.: +2.5 + (-0.3 - 0.8): +1.4v

    Ex E.22R'=2o.2kd- : 8513 v/vR.:152with&: 10kand&: 1kA,': 20'2 x sl:l x ----!-' 20.2 + r0 (r + 0.rs2)

    :4943N

    Ex E.23

    il : r+t: Iotba

    irr: R, - 15.7 , o.u9zi,l lQ5 + Ri4 l5.7 + 33.5

    =,:l

    ): 0.38 m/v

    -+Rr: 1.67 111The oltage drop on R, iS:t.67 k x A : 150 mY

    : 0.26i.s Rr + Ri3 3 +234.8

    :'=lb5

    i5 _ il+R2 _i"z Rr + R2 + Ri2

    ?:,:r|

    Thus the overall current gain is:

    _ Il x-M92X 10ox.0126X lo..|

    X 0.8879 X 1: 55993 ./Aand the overall oltage 8ain isvo , Ru -i,"V,, R,, i,

    : a256 N

    il R3

    : 0.8879 + 5.05

    : 0.15 V : -- 591't't

    C,''(w / L)

    40o;

    2x'|xlgxqo

    160uX:Y' .8

  • Exercise 9-1

    Ex:9.1

    '4M :

    R-&- x s-(R.ll RD)c,, : \wc,,' * cou

    : ?x t, 1 X 3.45 + |-72 : 24:2 fFCg: C6: | .72 fF

    l0 .-^.-l0t0+0.1 2

    9.9 V/VI

    ,cc(Rc + RC'" = =:P_ :

    /'* ll,! voC ooo 10 : 4.1 fF

    Ex 9.4Peak current occurs AtVl= Vn : 5

    ea : |'(l)' v, rv,^l'_ 1\2y205_2)'z- 18

    2

    Ex: 9.5

    n-=r:lmA_40mv 25 mV vCo":.r'8.:20x 10 12 l0 ]

    : 0.8 pFC\.:2Ci",,:2x20: ffc,: c," + Cl" = 0.84 ppC: Co

    ( * :'e.l-'u'\ vc

    lo :6l m

    : 0.016 Hz2n| x (l0 + 0.I M)I - I _.: ;e '' '-

    =

    --:_- : 3l8 z

    _1

    -'z_lJl 0.6

    f =-fn: 318 Hz

    x 9.2Cc:C=C62:lF

    3. : ao$-+l. : 4mX25rn : l m

    r, : 2.5 k = =: ]8-

    . :V':25mv ,'" l, ImA,:l

    2 zC., IR,ll r, + R,,r]

    2cc2(RL+ RD) 2rl X (l0 + 0):8Hz

    2z1[1 K|| 2.5 K+5 K]: 21 .4 z

    2 fF t2 fF,o ' r-, * Rll R 'rl"L' + J (, * u1)""

    8." _ ,;G;'

    _ ,0 X l0 l = 7'47 cH2(0.84 + 0.|2) Y |0 ,

    Ex: 9.6

    l'l - f- _ 'o : fJ

    .fr : 50o MHz

    ] _ i-;;\4 l r( ,'7 + ('U" = ---j:----_j-:- - 12.7 pF' 2x5fi)\ 106

    C: l2.7 _ C: 12.'7 _2 : |o.'1 pF

    Ex:9.7 Diffusion componen of cat /, of l m:10.7-2:8.7pFSince C,i, is proortional to /., then:

    2 ' Cc2' (Rc + R'\

    I

    2"l(8K+5)f.: |2.2 zEx: 9J

    - n' 3.45 X 0

    '"'_ ; \ l0': 3.45 X 10 rF,i m2 : 3.45 fF / m

    C6v: WL6vC",: l0 x 0.05 x 3.45:172 tF

    l * vo

  • Exercise 9-2

    cd,(: .'| m) = 0.87 pFC(r: 0.| m) : 2.87 pFf-- : o.| m) = -----_g!-' 2'(c + c!,)

    : 4x10 r2(2.87+2)X10-12

    : l3O-7 MHz

    Ex: 9.E

    ^ :- Ro - o'M

    Ro + R,,.u'"'R': 7.l4 k, g. : 1 .47

    Rg, : 10 t_4'7 l1 Xl7.l4

    (4.7 + 0.0 ) Mf}_7'12 /

    cia:'' + |(1 + X 10_3 + l.5 + l)=68pF

    C., -- 4,26 oF2C'"(R';.||R61

    2 y 4'26(lo K | 4.7 M)

    = 1 .42 Hz2 68p . 1.65

    Ex: 9.11 Usig equations 9.6l and 9.63, we canwrite th genera form of the transfer function of adirect-coupled amplifi e. as:

    A): Aoc here r is the Dc gainl+ s

    2nfo"of the amplifier and/3J, is the upper 3dBfruency of the amplifier.n this case we hae : 1000 and/Md : 00 Kz = 1 HzTherefore A(s) - 10

    t+ J2 lo5

    Ex: 9.12For this amplifie we have:

    t():('.*)('.*)

    By dennition at = ,we have

    |a11,,"1f : +A1

    (,-(ff)')('-(#)

    Ex: 9.9

    cs":1pFC.q: (l + g.R)C"a = (1 + 1 x 7.14)C ra : 8.l4Cra

    /r > 1 MHz.e

    C^: C*+ C,

    1MHz , A'M ,_'2rCii(RsisllRc)= I pF + 8.14 CslD

    1

    2(l + a.l4cga'pF(l K || 4.7 M)1.63> + 8.|4C"

    C < 0.o17 PF or C< 77 ff

    Ex:9.10A": _3912: _19.5 V/V

    =1MHz ['.(ff)']l' .(#)'l='f 72 : p1and fl = 0.9 l, then

    ['-()']['"(**)'] :'

    (l +o.g'?)(l -()') = ,

    ' -()' : l.1=(l)' : 0.l +K : 2.78

    f , - 0.99 t, then :

    ['-eP]['-(#] :,1r *o.oo,1(r -()') = ,-

    , -()' : r.ol =+(s)' : o.or =K : 9.88

    ' R^" _ nr+*,0

    - r"' 8-' Rr+r+(Rr+Rsig)

    2.540.o-]XR;1 + 5 2.5 + 0.05 + (10 || 5)

    : -0.013 x R.=n. = t.s k : ro|i Rc|l R.

    l.5 k = (10ll 8 1| R.) k: '7 .4 kll RL

    -J R, = l.9 k

    ( f '' : I R_.^ __ l.65 k2C,. ' R"1" ''"

    Cin : C + c(l + s. R;)

  • Exercise 9-4

    Ex: 9.16 Refering to the solutio ofExample9. l 0, the ale of| determined by the exactanatysis is:

    f : f"1 : 143.4l1zlso'Au: _c'.RL: _l'25x|o: _12.5NTherefoe the gain-bandwidth pmduct (f,) is:

    f, : 143.4 x l2.5 : l.79 Gzsince, is less than, :2.44Glzuld:40 GHz, theefore it is a good aproximation ofthe unity gain frequency.

    Ex:9.17 Referring to the soion ofExample9.10, ifa load resistor is connected at the outputhaling the value of R; , then e have

    n;: rolL roz and herefore

    |A'| : s. 'o' 'o, : l.25 x : 6.25 N

    Using equation 9.92 and assumingJ,s/",,

    I

    0 k( in example

    2.{{C'" + C "o(|

    + .RL)I. R:ie + (c. + csl)R;.]

    "" _ 2LL20 [ + 5f|l + l'25 5)l. l0 K

    +(2sl+s/)xsKl'' =

    223 |Hz

    1, = |M|.f l : 6.25 x 223= l.4 Gltz

    Ex: 9.1t Refering to the soluion ofExample 9.0

    s,, = +, is1,,is increased by4 atdV*by 2

    then :

    '^=ffi:2,.,: 2.5 4

    To calcuat Rilf Rr, = ronrll ron, =9.0

    'Since ro J + increasing /, by 4 reducesboh roQ and roq2by 4Thus :

    ,o,|1 r o = lo-sil(rrll'o)

    nj : lxroK = 2.sko-4|ul = g.. R, : 2.5 x 2'5

    : 6.25 AUsing uation 9.93 and assuming/,1/",we hae:

    2|[Cr' + Cr7(l + g.,Ri)iR"I* + (cL+ csd\R;}

    21[[20 f + 5 f(l + 6.25)]l0 K + (25 + 5) f X2.5 Kf H : 25o l1jz -+ f,' !f" : 250 Hzf,=lAtl' 7" : 6.25x25O: 1.56GHz

    Ex: 9.19

    ,.""^=+: ffi: r:o",.=l?l

    :#:son; : ,",r"ll roono: 130k| 50kR;:36k

    ,a lmv 25 mv

    '-:E-: M :5k" ' 4n v

    (a) From uation (9.97) we have:

    lu: - ____.'--G-n;),s|3rf/: _ --_j__{ 40 X 36 k) - - 7516+0.2+5 ',-

    A,, = -fisy(b) Using MiIIer's theorem e have:

    Cin: C'+C'(|+.RL\= 16 pF + 0.3 pF(l + 40 X 36) : ,48 pFC;" : 448 pFr- |'"_ 2nc,.R'," 2C,^tr"|| (R.ie + r,)]

    _ l :8z.6kz27 448 pFt5ll (36 + 0.2)]

    4.3 k(c) USig the method ofopen_circuit time con-stats, from equation (9.l00) we hae:

    r: C,R.'. + crt(l + g.Ri)R.l. + RL+ 1LRLWe hae i.,. = r- ll (R.ie + r,) 3 4.3 ki = "-ll ro,n, : 36kO

    :46m4

    v

    = zx t.zs !

    t!92 : L44

  • xercise 9-5

    f :.

    I

    Thus:

    to : |6x 4.3 + 0.3[(1 + , x 36)4.3 + 36]+5x36o = 2.12 nsec

    I

    f, : :L :75.1 kHz(d) Using equations (9.l02)' (9.103), and (9. 04)e have:

    40 4, 18. I v - -,.- .;Hz2Cu 20.3 pF

    2c "

    + CP( + g.R.)]R.', + (c + c)R;

    = f pt = 75.1 k{z

    'fz =

    l [c, + c,(l + 8.R;)]f;i + GL+ c.)RL2z IC"(CL+ C) + c.c]R.iRf : 25.2 HzSincef

  • Exercise 9-6

    +1H: css' Rsig + .25 x cs,X 21 XRsi=Rsigcs,X6.25

    cscoDE - Amplifier:Using 9.l 8 and neglecing the terms that donot inclde Rsis

    a : R.i[C, + Cr/l + 8^R\lR,,: r^ll (t'+Rtl : ,^11 2'o"' "'' \ g^ro l "' -ro

    /'#1---l , : R.;r|Cr' + 0.25 X cs,l +

    = Rslg ' cs, .75

    "fa cscon : '""-/ cs cAscoDE

    _ R.ia.Cs, x 6.25 _ 3.6R*ip.Cz, )/ L75

    c) f = |Au|' f .fr.n..,,,n. /lvlc,scoo\,lt'"fac.scoo\,- 1- ., ' /,,,- J= 2x3.6

    Ex: 9.24 Referring to he solution ofExe.cise 9.19 we have:

    s.:40 and r. = 5kNoe that for the cascode amplifie considered inthis exercise:

    t|:to2=r.:5k,^ mA

    8n : 8-z : 8- : ,'J -Rn : r.t + r : 5 kr, + 0.2 k = 5.2 kf}A. : 8-.'. : x 130 = 52 /Ro : ro: ro : ]30k^ r^1+ R 5,(. ^r 5.- R' 20+ l

    "' F+1._ 130+50

    13 + lq20

    R1"2 : 35 Ro

    =p2r92 : 2 X 130 k = 26 M

    o' : ;* r'* ,_L"'c'('" ll R.,)

    A.. - azy

    To calculate, we use the method of open-circuittime constants. Fron Figre 9.30 e have:

    R',,. = r.1||(r,r + R.1.)= 5 K|(0.2 + 36)R'.,. : 4.4 kR., : R'",. : 4.4 kO

    Ro, _ ,o,l R,", - ,,ll [,"J ', - {. - I -l R,. ll

    L (",*ffiJlRol : 130 I| 35 :35 Rnl : R',r*(l +g-,Rot\*RotRr1 : 10.6 kn: C..Rot * C*l .Rn1 +(C""r+C.:)Ro| + (CL + C,", + C"). (n ll Ro)r, = i6px4.4K+0.3 px 10.6K+(0+ 16p)

    X 35 + (5 p +0+0.3 p)(50 | 26 M)t, : 339 nsr,': | _ l - 469Hz2' 2 x 339 nS _

    f ' =|u1' 1o : 242 x 469 1-lz

    : l l3.5 Mzcompared o the cE amplifier in Exercise 9.l9,

    l.4rl has increased from 175 V/V to242 / 'J"has icreased from 75.1 KHz to469 z and, has ineased from 13.1 Mz ol l3.5 MzTo incease, to Mz we need:

    .,, : -_L : 159 ns_ hus" 2of "

    16 p x 4.4 K + 0.3 p x 10.6 K + 16 p x 35+(C.+0.3p).(50Kll 26M): 159 ns+CL: l.4pf

    Ex: 9.25 R'. : R ll , = 2 K |1 20 K= l0K

    From Eq. 9.121 we have:

    : ,"ll'# ='fi

    , 8^R'^"

    _ i^R,

    "8-J ;q"'':8Gz

    1.25 x 10 : 6_93 Y1+1.25l0 vl _- 1-25 n2 (2of +5f)

    r' = | .8. _ 1 . !-9 - 196112-' 2 C"" 2 2ot _R3a = R,i3 : 10 - R.i"+R',. 10+l0K

    t-s-.R! t+t25xto: 1.48 kO

  • Exercise 9-?

    R.. : R.ll R. : n"1 (."U ;):20 K || 20 K 1| 8

    R.. : 0.74 kTo find r, :

    79 = R'7C3a : 10kX5fF : 5ps., : R., X Cr. : 1.48 k 20 fF:30 ps7cL: RcLC = o'74 kX 15 fF:ll ps'rH: '* r,+ca: 9l psThe percentage contibution of ime consants to

    , associaed ih c"i, c.", and c are:

    E x t = 55ga: 19 x l = ]_37:9t 9t!!'ul:lzco9l

    |- - | - l _ l.75cz2' 2 9|

    Ex: 9.26 e have

    ,'. _ 9V' _ l 25 mv - 2.5 k-lm

    n :L: J-: n,'ll 25 mvnoting that in this case R, -+. , \e hae:

    G"= ( + l )(r" || R1)R'.ig + ( + l)tr. + (r,1| R.)1

    " + lR'*i : R.lc * r, ssume r, : +c - 0.965 Yv

    zoc -!:-' + l8-

    2nlc "

    + C!\

    mc" :4" -c,, - ^---=:- -2pF'' 2 l. n 2,4Hzc" = 14 FThusF : +l :459MHz' 2C.r.'e hae:

    R, = R'.', ll tr" + ( + l )R'.]R'.,* : R.,.*r,: l k+.l k

    : l.1 kR'' : R,||r,,= l.l k]| l0o k : 0.99 k

    R : 1.l kl| [2.5 + (l + l)0.99]R = 1. k

    we hae:

    = R''i*R'+R''ip+R'r r.

    R.:5 flwe hae:

    _ l.l + 0.99- 1.1 . o-99

    2.5 2.5l

    2n(cp + C.R,)/ : 55 MHz

    x':9.27 1a1 Vo =

    e have:

    r: 1" 2C,r,+ l

    2zrC -r-

    n2Yt n - -L o8m - o aVo o'2 'v(b) 7 : g-(Rr|| r") where,-: Vo : 20 = s" (/2\ 0.4m- A,t: 4 m(5 K l! 50 K) : 18.2 Y

    (c) For a CS amplifier, when R.i8 is low:

    r. : I l E-9- l 5l2(C, + C

    "nlR'1 '

    here

    R'. = Roll r, : 5 K|l 50 : 4.5 kand c. = l fF + CDB : |lo fFhs.

    f. 295 MHz2?r( |1 f + l0 f.) 4.5 K

    (d) Using the open-circui ime-consans method

    for R. : l0 k

    /, : _L(Eq e.8s)where, from Eq. 9. 84:

    , : Cr,' i, + csa[R,(l + 8.f'.) + R']* C'R'

    thus' 11 :50f l0K+...10fuo K(l +4 m x 4.5 K) +4.5 Kl +...(lf+lf)X4.5Kf, : 0.5 ns +1.96 ns +

    0.5 ns : 2.96 nsfH: 1/(2 2.96ns) :53.- z

    l x 0.2 m/V2

  • Exercise 9-8

    Ex: 9.28

    ,: IJ z 2' C.5' R55

    - I :15.9MH22z ' (0.4 p)25

    Ex: 9,29 For a loaded bipolar differential

    ampli6er:1

    Ad : tgn rowhere,

    /2 _8^:_

    /2

    Using (9.l53) to (9.157) ve have:n'.: R,.ll Ro:2oKll K = i5 kRr2 = R.ig(l +G.R'L\+ R'. = 235k

    R +R. R"i" + Rs..: -----_---------_ 20"' l u 8.R, ";u,

    |] 2

    ':_o, R.ie * Rs

    ').

    2+ lR._ ! = kRs. _'"j'-t'sk

    T, = Cl?g, + C' Rr1 CR':2o f(1o.5K + 5 f 235 K + 5 f 15)

    " : 1.46 ns+ f 11 = }a: '* '""GBP = 10 X lo9 Mlz:1. Gz