Top Banner
Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468
10

Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Mar 26, 2015

Download

Documents

Autumn Gilbert
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Micro Evolution

-Evolution on the smallest scale

-Evolutionary change within a population

Read p. 468

Page 2: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Chapter 23 Objectives

1. Mutation and Sexual Reproduction produce genetic variation and allow evolution to occur.

2. To understand the Hardy-Weinberg equation.

3. Natural Selection, Genetic Drift and Gene Flow can alter allele frequencies within a population

4. Natural Selection is the only mechanism that consistently causes adaptive Evolution

Only inherited traits are passed on. The color in these caterpillars are due to diet not genetics.

Page 3: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Genetic Variation-Genetic variation within a population

1. Gene Variability

2. Nucleotide Variability

-Geographic Variation

1. Populations in different locations can have genetic variation

2. Some due to Natural Selection and others by chance.

Cline variation due to natural selection

Example of chromosomal changes that spread by drift or chance events. (No phenotypic differences between two populations.)

Page 4: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Mutations

The ultimate source of new alleles

1. Only mutations on gamete forming cells are passed on. (Not Somatic cell mutations)

2. Most mutations aren’t passed on

3. Point Mutations are changes in at least one base pair.

Why are most mutations harmless

or neutral?1. Many mutations happen

on the non protein coding part of DNA.

2. If mutation does occur on protein coding portion it may not change the amino acid it codes for.

3. Even if the amino acid changes it may not change the shape of the protein.

Mutations that do alter protein coding genes.

1. Deletion, disruption, or rearrangement of protein coding genes results in harmful mutations

2. Duplication can be beneficial. (Olfactory genes in mammals) p. 471

Sexual Reproduction promotes genetic variation by

1. Crossing over

2. Independent Assortment

3. Random Fertilization

Page 5: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Populations and Gene Pools-Population is a group of individuals of the same species that live in the same area and interbreed.

-Gene Pool is the sum of all alleles within the population

-Allele Frequency is the total amount of dominant and recessive alleles in an environment

Page 6: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Hardy-Weinberg Principle – Describes a hypothetical population that isn’t evolving

-A population whose gene pool will remain constant or at equilibrium if only Mendalian segregation and recombination of alleles is at play

-Gene pool calculation is the sum of all dominant alleles and the sum of all recessive alleles

Hardy-Weinberg Conditions*Populations shift or evolve if at least one

of the below conditions aren’t met

(p. 474)

1. No mutations occur

2. Random Mating

3. No Natural Selection

4. Extremely large population size

5. No Gene Flow

*Application example p. 474

-Hardy-Weinberg equation is used to predict percentage of a genotype being heterozygous or homozygous

p2 + 2pq + q2 = 1

p = one allele q = different allele

Page 7: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Genetic Drift is a condition that alters allele frequencies within a population. P. 476

1. Random events can cause genetic drift

** Small populations

2. The Founder Effect

3. The bottle neck effect

Important to note is that a change in allele frequency means the population is evolving.

Possible Outcomes

-Genetic Drift can lead to loss of genetic variation

-Genetic Drift can cause harmful alleles to become fixed in a population

Page 8: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Gene Flow also contributes to changes in Allele Frequency

-Transfer of alleles into our out of a population

-Copper mine example p. 478

Important to note is that a change in allele frequency means the population is evolving.

Page 9: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Natural Selection contributes to changing allele frequencies within a population

Important to note is that a change in allele frequency means the population is evolving.

Individual’s phenotypic traits

Gives Individual Relative Fitness for Environment

Relative Fitness leads to an individual’s advantage or disadvantage to reproduce

Reproductive success = passing on genes and contributing to the population’s gene pool

Genotypes indirectly contribute to individual’s relative fitness

1. Directional Selection Favors extremes phenotypes mostly caused by extreme environmental changes

2. Disruptive Selection favors phenotypes at both extremes

3. Stabilizing Selection favors intermediate phenotypes

**Natural Selection is the only condition that leads to adaptive evolution

Page 10: Micro Evolution -Evolution on the smallest scale -Evolutionary change within a population Read p. 468.

Limitations to Natural Selection p. 484

Frequency Dependent Selection p. 484

Sexual Selection p. 483

1. Selection can only act on existing variations

2. Evolution is limited by historical constraints

3. Adaptations are often compromises

4. Chance, Natural Selection and the Environment interact