Top Banner
Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL . 1
54

Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Jan 04, 2016

Download

Documents

Ethan Wells
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 1

Page 2: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 2

A topical conference on elementary particles, astrophysics, and cosmology

MIAMI 2008

16 - 21 December 2008Lago Mar Resort and ClubFort Lauderdale Florida - USA

My Talk:

“A Flavour-SymmetricPerspective onNeutrino Mixing”

Page 3: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 3

F. Englert“The 24 near-instabilitiesof Kasper-Klug Viruses”

Page 4: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 4

Page 5: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 5

Page 6: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 6

Virus Particle Explorer (ViPER) protein database

F. Englert et al Phys. Rev. E 78, 031908 (2008)

The weak bonds serve to lift these zero modes, and the spectrum indeed exhibits a very low-frequency plateau of 24 modes

Hong-Kong 97 bacteriophage

30 - 6 = 24 modes

(Francois Englert (Brussels)of “Higgs Mechanism” fame:See F. Englert and R. Brout Phys.Rev.Lett. 13 (1964) 321).

Page 7: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 7

Conclusion: In the complex domain classical mechanicsand quantum mechanics are very much alike!

Classical and Quantum Physics in the Complex Domain

Carl Bender Washington Universty (St Louis)

HARMONIC OSCILLATOR Newtons Law: F = m a

Page 8: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 8

Page 9: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 9

Page 10: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 10

Page 11: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 11

Special “Outreach” Lecture at the University:M. Spiropulu: The Universe in Collision: Discovery Physics at the LHC

L. Pontecorvo: Status of the ATLAS Experiment

P. de Barbero: Status of CMS Commissioning

P. Frampton: Predicts Cabbibo Angle: /32tan2θ

N. Van Eldik: First Physics with ATLAS and CMS

D. d’Angelo: Solar Neutrino Spectroscopy with Borexino

Page 12: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 12Miami 2008 – Fort Lauderdale – 16-21 Dec. 2008

D. D’Angelo – Borexino coll.

Survival probability after Survival probability after BorexinoBorexino

Assuming high-Z SSM (BPS 07) the 8B rate measurement corresponds to

Pee (8B) = 0.35 ± 0.10 @ 8.6 MeV mean energy

pp 7Be

8B

Assuming high-Z SSM (BPS 07), the 7Be rate measurement corresponds to

Pee (7Be) = 0.56 ± 0.10 (1)

which is consistent with the number derived from the global fit to all solar and reactor experiments (S. Abe et al., arXiv: 0801.4589v2)

Pee (7Be) = 0.541 ± 0.017

We determine the survival probability for 7Be and pp-e, assuming BPS07 and using input from all solar experiments (Barger et al., PR (2002) 88, 011302)

Pee (7Be) = 0.56 ± 0.08

Pee (pp) = 0.57 ± 0.09

Page 13: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 13

1) “Plaquette Invariants and the Flavour-Symmetric…” P.F. Harrison, D. R. J. Roythorne, and W. G. Scott, Phys. Lett. B 657 (2007) 210. arXive:0709.1439 [hep-ph]2)“Real Invariant Matrices and Flavour-Symmetric…” P.F. Harrison, W. G. Scott and T. J. Weiler, Phys. Lett. B 641 (2006) 372. hep-ph/06073363)“Simplified Unitarity Triangles for the Lepton Sector…” J. D. Bjorken, P.F. Harrison, and W. G. Scott, Phys. Rev D 74 (2006) 073012. hep-ph05112014)“Covariant Extremisation of Flavour-Symmetric Jartlskog Invariants…” P.F. Harrison, and W. G. Scott Phys. Lett. B 628 (2005) 93. hep-ph/05080125) “The Simplest Neutririo Mass Matrix” P. F. Harrison and W. G. Scott

Phys Lett. B B594 (2004) 324. hep-ph/0403278. ……..

A FLAVOUR-SYMMETRIC P. F. Harrison (U. of Warwick)W. G. Scott (STFC, PPD/RAL) Miami-2008 17 Dec 2008

“Tri-Bimaximal Lepton Mixing and the Neutrino Oscillation Data” P.F. Harrison, D. H. Perkins, W. G. Scott, Phys. Lett. B. 530 (2002) 167. hep-ph/0202074 (see also: HPS hep-ph/9904297 )

OUTLINE OF TODAYS TALK:

NOW OFFICIALLYA “FAMOUS” PAPER ( > 250 CITES).

“A TREMENDOUS ACHIEVEMENT!” T. D. LEE AT CERN - 30 AUG 2007 (CERN indico video min. 42!!)

PERSPECTIVE ON NEUTRINO MIXING

(emphasis on Flavour-Symmetry )

OF COURSE IT IS ACTUALLY THE EXPERIMENTS WHICH ARE TREMENDOUS!

“Review” ofpast few years2004-2007 of HS…

Page 14: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 14

T. D. LEE LECTURE AT CERN 30 AUG 2007

CERN video: http://indico.cern.ch/conferenceDisplay.py?confId=19674 (min. 42)

Page 15: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 15

2/13/16/1

2/13/16/1

03/13/2 321

e

3/13/13/1

3/13/13/1

3/13/13/1 321

e

WE DID “ACHIEVE” SOMETHING HOWEVER:WE PREDICTED TWO SM+ PARAMETERS!!:

Tri-Bi-Maximal (HPS 1999/2002)

Tri-Maximal Mixing (HS/HPS 1994/1995)

HS/BHS (2002-2006)

* 3/1*

* 3/1*

* 3/1* 321

e

via Tri-Phi-Maximal & Tri-Chi-Maximal (HS 2002)

“ -Trimaximal Mixing” “S3 Group Mixing”

“Magic-Square Mixing”

“Tri-χφ-Maximal”

3/122 UUe

CHOOZ EXPT. SAYS < 0.03 (not HS/HPS!!)

There was never a prediction from HPS/HS of exact Ue3≡0!

Please not just “tri-maximal”!!

IMMEDIATELYGENERALISES

Page 16: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 16

Solar Datadist. spect. B and . systs corr. ignoring -Salt NoSalt of

average naivemy is 03.035.0/point SNO8

NCCC

ph/9601346-hep 111 (1996) 374 PLB also see ;ph/0202074-hep 167 (2002) 530 PLB HPS

Page 17: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 17

ph/9601346-hep 111. (1996) 374 PLB HPS3 Fig.

MIX.TRIMAX.IN DICTEDPRE ! ! ! !

THE “5/9-1/3-5/9” BATHTUB

Page 18: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 18

21

31

61

21

31

61

031

32

|U| 2

}

Symmetries of TriBimaximal Mixing:

1) “CP symmetry” Zero CP violation J=0(hopefully approximate!)

2) “μτ-reflection symmetry” “Two rows equal” (=Max CPV!) |Uμi|=|Uτi| for all i=1-3.

3) “democracy symmetry”one trimaximal eigenvector |Uαi|=|1/3 for all α for some i.

Page 19: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 19

HPS “Derivation” of TriBimaximal Mixing:

2

10

2

1

010

2

1-0

2

1

*

*

*

3

ω

3

1

3

33

1

3

ω3

1

3

1

3

1

τ

μ

e

ν ν ν * * * 321

UUU l

abb

bab

bba

*

*

*

MM

* * *

ll

x0y

0z0

y0x

*

*

*

MM

* * *

νν

τωμe

τμe

τμe

l

mωmm

ωmωmm

mmm

*

*

*

M

2

i

3

1

6

12

i

3

1

6

1

03

1

3

2

τ

μ

e

ν ν ν 321

3 x 3 circulant(by definitionof the * basis)

2 x 2 circulant(determinesthe physics)

}m m{m

UMMU

τμe

llll

diag2

} {diag

3212 mmm

UMMU

MM M

In the “circulant basis”: *

ω/3m/3ωm/3mb

/3ωmω/3m/3mb

/3m/3m/3ma

2e

2e

2e

A popular choice:

Harrison, Perkins, Scott, Phys. Lett. B. 530 (2002) 167. hep-ph/0202074

† †

Page 20: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 20

YES – YOU’VE SEEN THESE NUMBERS BEFORE SOMEWHERE!

2

1

3

1

6

111

2

1

3

1

6

111

03

1

3

200

000

102

21

Mmm

JM = 0SUBSET

OF

CLEBSCH-GORDANCOEFFS.

e.g.

1 1 21 jj

COULD PERHAPS BE

A USEFUL REMARK ?!!

See: J. D. Bjorken, P. F. Harrison and W.G. Scott. hep-ph/0511201

Page 21: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 21

6

cissc

2

siscc

3

1

2

cissc

6

siscc6

cissc

2

siscc

3

1

2

cissc

6

siscc

cs3

2isc

3

2

3

1ss

3

2icc

3

2

φχφχφχφχφχφχφχφχ

φχφχφχφχφχφχφχφχ

φχφχφχφχ

“ν2-Trimaximal Mixing”

6

si

2

c

3

1

2

si

6

c6

si

2

c

3

1

2

si

6

c

s3

2i

3

1c

3

2

χχχχ

χχχχ

χχ

6

s

2

c

3

1

2

s

6

c6

s

2

c

3

1

2

s

6

c

s3

2

3

1c

3

2

φφφφ

φφφφ

φφ

“Tri-χ-Maximal Mixing” “Tri-Φ-Maximal Mixing”

cosφc

sinφs

cosχc

sinχs

φ

φ

χ

χ

Exact μτ - Refl. Symm., J≠0 J=0, Break μτ-Symmetry

Χ→0Φ→0

“Tri-φχ-maximal mixing”, “S3 group mixing” “Magic-square mixing”, “BHS-mixing”… .

“Symmetries and Generalisations of Tri-Bimaxiaml Mixing” P.F. Harrison, and W. G. Scott Phys. Lett. B 535 (2002) 163. hep-ph/0203029

“Permutation Symmetry, Tri-Bimaximal Mixing and the S3 Group ...” P.F. Harrison, and W. G. Scott Phys. Lett. B 557 (2003) 76. hep-ph/0302025

Page 22: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 22

Symmetric Group S3 (natural representation):

001

100

010

P(123)

010

001

100

P(321)

100

010

001

I

100

001

010

P(12)

010

100

001

P(23)

001

010

100

P(31)

zP(12)yP(31)xP(23) P(321)bbP(123)aI

MM νν

odd"" even""

zxy

xyz

yzx

ν

ν

ν

abb

bab

bba

ν

ν

ν

ν ν ν ν ν ν

τ

μ

e

τ

μ

e

τμeτμe

Nature Plays Sudoku !!

Experiment tells us thatthe neutrino mass matrix² in the (charged-lepton) flavour basis can be writtenas a 3 x 3 Magic Square !!

All row/column sums equal !!

The most general such (hermitian) matrix may be constructed as an “S3 Group Matrix” in the natural representation of the S3 group ring

2x)yy)/(x(z32φ

zx)yzxyzy(Imb)/(x62χ 222

tan

tan

Any “S3 Group Matrix” clearly has (at least) one trimaximal eigenvector:

1

1

1

3

1

ννMM

“circulant” “retro-circulant”

“ -Trimaximal Mixing”=“Magic-Square”/”S3 Group Mixing”=“Democracy Symmetry”

2

“Permutation Symmetry, Tri-Bimaximal Mixing and the S3 Group ...” P.F. Harrison, and W. G. Scott Phys. Lett. B 557 (2003) 76. hep-ph/0302025

Page 23: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 23

Simplified Unitarity Traingles in the Lepton Sector

The Matrix* of UT angles:

“ν2.ν3”=“the ν1-triangle”

e3

e3

e3

321

U2

1C

2

1

3

1 C

6

1

U2

1C

2

1

3

1 C

6

1

U 3

1 C

6

2

τ

μ

e

ν ν ν

τ3τ2τ1

μ3μ2μ1

e3e2e1

321

φφφ

φφφ

φφφ

τ

μ

e

Φ

ν ν ν

“BHS” Mixing

Each angle Φαi appears inone row-based triangle and one column-based triangle

e

μ

τ

Uτ3

Uμ3Ue3

*Footnote [42] hep-ph/0511201 Note the natural “complementary” labelling of angles and triangles

J. D. Bjorken, P.F. Harrison, and W. G. Scott, Phys. Rev D 74 (2006) 073012. hep-ph0511201

CPe3

23e3 J

23

U θ-

2

U

ImRe

= “ν2-Trimaximal”

Page 24: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 24

“Simplified Unitarity Triangles for the Lepton Sector…”J. D. Bjorken, P.F. Harrison, and W. G. Scott, Phys. Rev D 74 (2006) 073012. hep-ph/0511201

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

321

UU

Π

UU

τ

μ

e

ν ν ν *

1ν 1l1ν 1l*

1ν 1l1ν 1llν UUUU: Π

J i K: Π lνlν

π π π π|

π|

π|

Π- ArgΠ- ArgΠ- Arg

Π- ArgΠ- ArgΠ- Arg

Π- ArgΠ- ArgΠ- Arg

τ

μ

e

φφφ

φφφ

φφφ

τ

μ

e

Φ

ν ν ν ν ν ν

τ3τ2τ1

μ3μ2μ1

e3e2e1

τ3τ2τ1

μ3μ2μ1

e3e2e1

321321

UUUUUUUUUUUU

UUUUUUUUUUUU

UUUUUUUUUUUU

τ

μ

e

Π

ν ν ν

*μ1

*e2μ2e1

*μ3

*e1μ1e3

*μ2

*e3μ3e2

*τ2

*e1τ1e2

*τ1

*e3τ3e1

*τ3

*e2τ2e3

*τ1

*μ2τ2μ1

*τ3

*μ1τ1μ3

*τ2

*μ3τ3μ2

321

We define the Matrix of UT Angles:*

From the Plaquette Products:

Form the Matrix of Plaquette Products:

*Footnote [42] hep-ph/0511201

3) (mod

Page 25: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 25

ooo

o

o

o

4oo

ooo

ooo

tbtstd

cbcscd

ubussud

180 180 180

180|

180|

180|

)0(λ68112

239067

157221

t

c

u

φγφφ

χβφαφχγφ

φβφχβφ

t

c

u

Φ

bs d b s d

UNITARITY TRIANGLES IN THE QUARK SECTOR

THE MATRIX OF UNITARITY TRIANGLES IN THE QUARK SECTPR

EQUIVALENT INFO. TO CKM MATRIX !!

χ

α

β+χγ -χ

s

d

b

α

βγ

u t

c

“d.b”=“the s-triangle” “t.u”=“the c-triangle”

( in SM - see e.g. F. Muheim “Flavour in the Era of LHC” HEP Forum 21 June 2007)o1

!!!20 CDF/D0 o

Systematic “complemenatry” notation hereis a big improvement on existing notations!!

Page 26: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 26

P.F. Harrison, D. R. J. Roythorn, and W. G. Scott, Phys. Lett. B 657 (2007) 210. arXive:0709.1439 [hep-ph]

1) Flavour Symmetry: A fundamental theory of flavour should be Flavour-Symmetric (ie. it should make no reference to explicit flavour indices).

The Principles which guide us:

Use Flavour-Symmetric Jarlskog Invariant variables!!The Architypal example:The Jarlskog CP-Invariant:

2) Jarlskog Invariance: A fundamental theory should be weak-basis independent(i.e. it should make no reference to any preferred weak-basis).

We define 6 New Flavour-Symmetric Jarlskog-Invariant mixing variables :

Independent, of plaquette choice l,ν hence “Plaquette Invariant”

νl S3S3 )11(

The Jarlskogian J is “odd-odd” under separate l and ν flavour permutations:

νl S3S3

33 CC l spanning theInvariant polynomial ring

(functions only of mixing angles)

“Plaquette Invariants and the Flavour-Symmetric …”

with odd/even symmetry under:

An `elemental” set - not all independent, e,g,

††

Page 27: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 27

b

s

d

1

1

1

tcu

b

s

d

1

1

1

tcu

Jarlskog Invariance:

U(3)

(Also known as Weak-Basis Invaraince)

In any “weak” (“gauge”) basis the weak interaction is diagonal and universal (i.e proportional to the identity matrix)

We often seem to choose to blame the mixing on the “down” quarks! weak basis

But we could equally choose to blame it on the “up”-type quarks! weak basis

Elsewhere in the Lagrangian: (i.e in the yukawa sector)

Mu is diagonal(Md is non-diagonal)

Md is diagonal(Mu is non-diagonal)

Mass²Matrices

CCweakint.

All observables are Jarlskog Invariant: e.g. masses, mixing angles: etc. J δ m m m

V m m m

13 3 μe

2 ub t du

Note that the Jarlskogian J is (moreover) also Flavour-Symmetric !!

Page 28: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 28

33333

22222

1

Tr :

Tr :

Tr :

mmmLL

mmmLL

mmmLL

e

e

e

FLAVOUR-SYMMETRIC

Charged-Leptons: Mass Matrix:

JARLSKOG INVARIANT MASS PARAMETERS

} {

} { 321

mmm

LLL

e

33

32

31

33

23

22

21

22

3211

Tr : Tr : Tr :

mmmNNmmmNNmmmNN

} {

} {

321

321

mmm

NNN

Neutrinos: Mass Matrix:

lll MMM : L †

ννν MMM : N †

Page 29: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 29

6/)23( Det

)/2( Pr

Tr

32131

221

1

LLLLmmmL

LLmmmmmmL

LmmmL

e

ee

e

THE CHARACTERISTIC EQUATION

e.g. For the Charged-Lepton Masses:

0 ) (Det ) Pr( ) (Tr 23 LLL where:

The Disciminant:

222

613

31

23

22

21

321241

32

2

) ()()( 6/3/432/7

62/32/

ee mmmmmmLLLLLL

LLLLLLL

All are Flavour-Symmetric and Jarlskog Invariant!!

Page 30: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 30

3

1

3

1

3

1

z3

1y

3

1

3

1

x3

1w

3

1

3

1

)U(P2

xy)3(wzNL

T DetP Det)11( F

ΔΔ

(2)

)xy(wz)zyx(wz)yx(w1)/2P.P (Tr1) (1G 22222T(2)

Flavour-Symmetric Mixing Observables…P.F. Harrison, D. R. J. Roythorn, and W. G. Scott, Phys. Lett. B 657 (2007) 210. arXive:0709.1439 [hep-ph]

Six New FS Variables (“Plaquette Invariants”) A, B, C, D, F, G, analogous to Jarlskog J,order (n) with odd/even symmetry under - scalar or pseudoscalar.

z)]wz(wy)[xy(x2

9wxy)wxzwyz9(xyz1) (1C (3)

y)]xy(xz)[wz(w2

3y)]wz(xz)xy(wx)xz(z

y)yz(zy)wy(wx)3[wx(w)zyx2(w)11(A 3333(3)

x)]yyxwzz(w2

1wyz-xyz-wxzwxy

yz-zywxx[w331)1( B2222

2222(3)

y)]xxywzz(w2

1wxz-xyz-wyzwxy

xz-zxwyy[w33)1(1 D2222

2222(3)

/4FF/43GBDAC 2G2GFDCBA 32322222 Not all independent

)xS3(S3 νl

B, D are not l ↔νsymmetric

νl xS3S32 x 2 of

Page 31: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 31

Plaquette Invariance (= Invariance)νl C3 x C3

xy-wzF/3

xy-wz yzy-xy-yw- zyzwy yw

z)yxy(w-y)z)(w(yF/322

“PLAQUETTE INVARIANT”!!!

Page 32: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 32

Solving more generally for the P-matrix

Flavour-Symmetric Weak-Basis-Invariant Constraints on Mixing:

Democracy Symmetryie. one column=(1/3,1/3.1/3), iff: 0C 0F

“ μ–τ ” - Reflection Symmetry,ie. two rows (or columns) equal, iff:

0A 0F

Tri-Bi-Maximal Mixing, iff: 0JACF

1/6G in the limit F, A, C → 0 and 0 < G < 1/6, gives:

Page 33: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 33

Ansatz F G C A Symm. 18J B D

Tri-Bi-Max. 0 1/6 0 0 Dem., μτ, CP 0 0 1/12√3

Tri-Max. Mix. 0 0 0 0 Dem., μτ 1/6 0 0Tri-χφ-Max. 0 - 0 - Dem.(ocracy) - 0 -2 Rows Eq. 0 - - 0 e.g. μ-τ - 0 -2 Cols. Eq. 0 - - 0 e.g. 1-2 - - 0Alt.-Feruglio 0 - (6G-1)/8 0 μτ, CP 0 0 -Tri-χ-Max. 0 - 0 0 Dem., μτ - 0 -Tri-φ-Max. 0 1/6 0 - Dem., CP 0 0 -Orig. Bi-Max. 0 1/8 -1/32 0 CP, μ-τ,1-2 0 0 0No Mixing 1 1 1 1 CP 0 0 0

Jarlskog J measures CP-violation (J=0 protects against violation of CP).

F measures the acoplanarity of the P-vectors in the flavour space

(F=0 => Det <P(∞)> = 0, i.e. protects distant source against flavour analysis)

G = 3<<Pll(∞)>>-1 measures the flavour-averaged asymptotic survival prob….

Page 34: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 34

22211

22112

22111

2122122

21121

211

2121112

211

311

(3)

CC CC CC

CC CC CC

CC CC C

C

TrTrTr

TrTrTr

TrTrTr

C) NL

C

NL

T xy)3(wzP F

ΔΔ

(3)

ΔΔ3 Det (

DetDetDet

]N,i[LC nmmn Generalised Jarlskog Commutators:

The Matrix of Cubic Commutator Traces

The Jarlskog Commutator: N]i[L,C

3C C 3TrDet controls CP violation:

222120

121110

020100

A A A

A A A

A A A

2

1T

TrTrTr

TrTrTr

TrTrTr

The Matrix of Anti-Commutator Traces (traces of mass-matrix products):

}N,{LA nmmn And Anti-Commutators:

For example, F:

Directly in Terms of Mass Matrices: †

ννν

lllMMMN

MMML

In termsof Mass Matricesonly

Page 35: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 35

ml

nmmn m P. .mNL TrT

“Real Invariant Matrices and Flavour-Symmetric…”P.F. Harrison, W. G. Scott and T. J. Weiler, Phys. Lett. B 641 (2006) 372. hep-ph/0607336

νν1n

l1m

llTlmn Δ Δ diag )Σ (diag K )Σ (diag Δ diag Δ Q

The “P-matrix”: “T-matrix”

“Q-matrix”

The “K-matrix”

Moment Transform:

Moment Transform:

*1ν 1l

*1ν 1l1ν 1l1ν 1llν

lνlν

UUUUΠ

ΠRe K

2})PPP{P(PK 1ν 1l1ν 1l1ν 1l1ν 1llνlν ”permanent”

3) (mod

(invertible)

(invertible)

Page 36: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 36

FFTT .T.N.LT - .P..P 6F Tr -Tr

N .T..LT .PP 12G GGTT Tr Tr

CCTT .Q.N.LT - .KP 612G32C Tr Tr

AATT .Q.N.LT .K..P 2F-2A Tr Tr

CATT .Q.N.LT .K.P 32B Tr Tr

ACTT .Q.N.LT .K.P 32D Tr Tr

0.P.P .P.P TT Tr Tr

011

101

110

Expressed as Traces

Two l ↔ν asymmetric cubic variables B,D:

No l ↔ν asymmetric quadratic variables:

Two quadratic variables G,Fentirely in terms of Mass Matrices

Two l ↔ν symmetric cubic variables C,A:

etc. )L,L,(LLL 321GG

Page 37: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 37

03L

30L

LL0

L

1 L

1

2

12

ΔF

Expressed as Traces (cont.) The Mass-Polynomial Matrices Requd:

entirely in terms of Mass Matrices

etc. )L,L,(LLL 321GG

1

432

321

21

G

LLL

LLL

LL3

L

221

2231

414 LL2L3L4L6L L

3 L0

Anti-symmetric Matrix

Symmetric Matrix

L L

A

C

-1GΔ L DetL

Page 38: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 38

*1ν 1l1ν 1l

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

*1ν 1l1ν 1l

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

UU

UU

UU

UU

UU

UU

*1ν 1l1ν 1l

*1ν 1l1ν 1l

*1ν 1l1ν 1lI UUUUUU:Ω

1/9 G1/3 C2/9 ΩΩoddeven

*1ν 1l1ν 1l

*1ν 1l1ν 1llν UUUU: Π

J i K: Π lνlν

1ν 1l*

1ν 1l

*1ν 1l1ν 1l

UU

Π

UU

J 9i 1)/2- (G Πlν

lν G)/2- (1 Klν

Flavour-Summed Loop Amplitudes

Usual Plaquette Product:4-Plaquette

Hexaplaquette Product:6-Plaquette

even odd

purely real

Page 39: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 39

More Flavour-Symmetric Constarints:

0AF)(CG27F8C 23

0DF)(BG27F8B 23

1/3|U| 2i

2i

2i |U||U|

Completely Symmetric CKM P-matrix:

DB 2

i2

i |V||V|

0|U| 2i 0J 0|K| 2

0V 0V 0V 0VJFCAJ)F,C,V(A,

JFCA

2222

Extremise a “Potential”, e.g.:

0JFCA

Tri-Bi-MaximalMixing !!!

oαi

2

90φ

0J 0|K|

!!!

Page 40: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 40

z yxAction

EXTREMISATION: A TRIVIAL EXAMPLE

In the SM:

NOT BAD!!

z y

x

mmme

GeV 180 2

v

Add to SM Action, the determinant :

0 y 0 0

xAzxAzyA

z

y

x

0 0 0

zyx

mmmL e Det (taken here to be dimensionless) i. e.

zyx , ,Yukawa couplings

e.g.

P.F. Harrison and W. G. Scott Phys. Lett. B 333 (1994) 471. hep-ph/9406351

i.e. 2 zero mass 1 non-zero!

This notion appeared in:

Page 41: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 41

“Covariant Extremisation of Flavour-Symmetric….”

P.F. Harrison, and W. G. Scott Phys. Lett. B 628 (2005) 93. hep-ph/0508012

0 ]Ci[L, /3 C Tr

0]Ci[N, /3 C Tr T23

N

T23L

0 C]i[L, /2C Tr

0C]i[N, /2C Tr T2

N

T2L

/3C3 TrExtremising:

Extremising: - /2C2Tr

We extremise wrt Mass Matrices theselves:

N]i[L,C

ννν

lllMM MN

MM ML †

The Jarlskog Commutator:

31

31

31

31

31

31

31

31

31

21

210

21

210

001

Extremising:

/2Cr/3C 23 Tr TrV(C)

0/3)CC /2)CC C)C 3223 TrTrTr (((Characteristic Equationn:

0C Tr

3 x 3 Max

2 x 2 Max

)V(C“The Simplest Neutrino Mass Matrix”P. F. Harrison and W. G. Scott PLB 594 (2004) 324. hep-ph/0403278

C) Det(

(=ΣPrincipal Minors C)

etperms.

Page 42: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 42

X/ : X TX A AX Tr

) N][L, i : C (

0] ],[,[

],[F /2F Tr A

c.f.

νμμ

νμ

2

Mills-Yang / Maxell

Extremise wrt the Mass matrices themselves!

Exploit Matrix Calculus Theorem

0 ]Ci[L, /3 C Tr

0 ]Ci[N, /3 C Tr T23

N

T23L

Apply to Extremise Tr C³

Weak-BasisCovariant !!

Apply to Extremise Tr C²

0 C]i[L, /2C Tr

0 C]i[N, /2C Tr T2

N

T2L

Where A is any constant matrix and X is a variable matrix.

Page 43: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 43

cidxidy

idxbidz

idyidza

ν

ν

ν

MMN

ν ν ν

τ

μ

e

νν

τμe

The “Epsilon” Phase Convention*

The usual (charged-lepton) flavour basis has not been completely defined.

There remains the freedom to re-phase the fields such that he imaginary part of the neutrino mass matrix is proportional to the epsilon matrix

Incredible but true!!

Now the 7 parameters a, b, c, d, x, y, z encode directlythe 3 neutrino masses and the usual 4 mixing parameters.

*See Footnote 1 of: “The Simplest Neutrino Mass Matrix” P. F. Harrison & W. G. Scott Phys Lett. B B594 (2004) 324. hep-ph/0403278

01-1

101-

1-10

ε

ε N Im i.e. d

“the epsilom matrix”:

Page 44: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 44

/2)C( Tr r /3)(C Tr V(C) 23 N]i[L,C

Try a simple linear combination of the two:

)m)(mm(m

)md(mrdZ

Z

ZXY z

)m)(mm(m

)md(mrdY

Y

YZX y

)m)(mm(m

)md(mrdX

X

XYZ x

τμeτ

μe2

μeτμ

eτ2

eτμe

τμ2

0.550.330.11

0.250.330.41

0.190.330.48

P

0.035h GeV0.163 r/d 2

With the “Magic-Square constraint” imposedthere are analytical solutions:

Take r to be a constant with dimensions of (mass)²

In general, for sufficiently extreme hierarcy h → 0, we are close to the pole at X →0, i.e. x→∞ and we have |x| >> y, z,whereby the “Simplest” assumption must hold.

In this sense this V(C) above points to the “Simplest Neutrino Mass Matrix”despite that in practice (in actuality!) the hierarchy h is too large!!

In practice:

X

Page 45: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 45

”The Simplest Neutrino Mass Matrix”

P. F. Harrison and W. G. Scott Phys Lett. B594 (2004) 324. hep-ph/0403278.

0.030.13 m3m2

χ sin 2/3sinθ2atm

2sol

13

0Mν ,D“Democracy Symmetry”

111

111

111

D

“Mu-Tau Reflection Symmetry” (“mutautivity”)

ννT M) M( *EE

010

100

001

E

Finally, implementing the “Simplest” Condition:

In the charged-lepton flavour basis, ie. where lM Is diagonal, we impose:

the “democracyoperator”

Ie. commutes withνM

the “μτ-exchangeoperator”

Note definition includesa complex conjugation

dεxaIMν E

Page 46: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 46

CONCLUSIONS

Again T. D. Lee’s lecture (a 2nd clip- from earlier in his talk)Inspirational for anyone working on fermion mixing and flavour etc. :“….these two 3 x 3 matrices (CKM and MNS) are the cornerstones of particle physics… ….but do we understand them???”

1) “Tri-BiMaximal Mixing” has useful partners “Tri-χ-Maximal Mixing”, and “Tri-φ-Maximal Mixing” and more generally “Tri- χφ-Maximal Mixing”(now “ν2-Trimaximal Mixing”) which are also consistent with the data.

2) We have introduced 6 New Flavour-Symmetric Mixing Observables, A,B,C,D,F,G which like the Jarlskogian J can be used to constrain the mixings in an entirely flavour-symmetric way.

3) A programme of Extremisiing Flavour Symmetric Jarlskog Invariants,Is under way with the aim of constraining both Mixings and Masses.Thus far the best that can be said is that our results point towards “The Simplest…” PLB 594 (2004) 324 (hep-ph/0403278) and Θ13 ~ 0.13.

Page 47: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 47

T. D. Lee CERN colloquium Aug 2007

Page 48: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 48

SPARE SLIDES AND SLIDES IN PROGRESS

Page 49: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 49

UP-TO-DATE FITS

A. Strumia and F. Vissani Nucl.Phys. B726 (2005) 294. hep-ph/0503246

03.0/ 223

212 mm

12 IS THE BEST MEASURED MIXING ANGLE !!!

0.50) tan( 0.05 0.45 tan HPS 12 2

12 2

Page 50: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 50

01/21/2

2/31/61/6

1/31/31/3

τ

μ

e

.0003.504.496

.666.163.171

.333.333.333

τ

μ

e

|U|

ν ν ν ν ν ν

2

321321 e

e

0.03/ΔΔΔmh 223

212 1

ca

ab

Absolute neutrino masses not yet measured, but with the “minimalist” assumption of a normal classic fermionic neutrino spectrum we maymake a unique prediction for the MNS mixing:

The only operative parameter then becomes: (b-a)/(a-c) and setting:

In clear disagreement with experiment.

All the the right numbers in all the wrong places!!

Extremising Tr C² (non-trivial solution …continued)

X

3

1

3

1

P.F. Harrison, and W. G. Scott Phys. Lett. B 628 (2005) 93. hep-ph/0508012

Page 51: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 51

0b)z)(am(mxy))(d2mm(m

0a)y)(cm(mzx))(d2mm(m

0c)x)(bm(myz))(d2mm(m

μe2

τμe

eτ2

μeτ

τμ2

eτμ

0b))(amd(my))(x2mmd(m0a))(cmd(mx))(z2mmd(m

0c))(bmd(mz))(y2mmd(m

μeτμe

eτμeτ

τμeτμ

cb , 0yx 0,dac , 0xz 0,dc b , 0z y0,d

Eq. 1 the of-diagonal Real Parts:

Eq. 1 the of-diagonal Imag Parts:

)2mm)(m2mm(m

)m)(mm(mT c)Ta)(b(cz

)2mm)(m2mm(m

)m)(mm(mM b)Mc)(a(by

)2mm)(m2mm(m

)m)(mm(mE a)Eb)(c(ax

eτμμeτ

τμeτ

τμeeτμ

μeτμ

μeττμe

eτμe

e.g. Extremise Tr C²2 .Eq...........C]i[L, /2C Tr

1 Eq...........C]i[N, /2C Tr T2

N

T2L

2 x 2 Max. MixIn any sector!!

Easy Solutions:

Non-trivial Mass-Dependent Solution: d = 0

Fit a, b, c to “observed”

m ,m , m 321

ZeroCPV!

Page 52: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 52

ΔΔ33 N J L/3 NL, i Tr /3 C rT C Det

δ132312213

1/2223

1/2212δ13

21323231212 sss)ss(1)s(1)s(1sscscsc J

2

πs

3

1s

2

1s

2

1s δ132312

ννl

Tl

22

Δ Δ diag K Δ diag Δ

/2NL, i Tr /2C Tr C Pr

)m-m,m-m,m-(m Δ )m-m,m-m,m-(m Δ 211332νμeeττμl

etc. etc. ..... K ))cs(cssc)ss(cs(ccsc K

e2

δ223

223131212

213

212

2122323

2132323e1

21/cc |U| 1323τ3

ΔN ΔL NL, i- C ΔlΔ DiagDet DiagDet

Extremise Det C = Tr C³ /3 (wrt mixing angles, fixed masses)

Extremise the sum of The Principal Minors Tr C² /2 (wrt mixing angles)

3 x 3Max Mix. !!

2 x 2Max Mix. !!

(use hierachical approx.):

Page 53: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 53

0y)(x b)(ay)(x )m)(mmd(m

0z)(z a)(cx)(z )m)(mmd(m 0z)(y c)(bz)(y )m)(mmd(m

τμeτ

μeτμ

eτμe

2 ..Eq.0......... ]Ci[L, /3 C Tr

1 ..Eq.0......... ]Ci[N, /3 C Tr T23

N

T23L

b)(ay)(xa)(cx)(zc)(bz)(y

zσcyσbxσa

Eq. 1 Off-Diagonal Real Parts:

Magic-SquareConstraint!!

0 )zy(xxy)b)(d(a )m)(mm(m

0 )yz(zzx)a)(d(c )m)(mm(m

0 )xz(yyz)c)(d(b )m)(mm(m

222τμeτ

222μeτμ

222eτμe

Eq. 1 Off-Diagonal Imag. Parts:

xz and acz yand

and

c byx ba Circulant mass matrix

i.e. 3 x 3 Maximal Mixing!!Maximal CPV (J=1/(6√3)

Extremise Tr C³

Page 54: Miami-2008, 17 Dec 2008Presented by: W. G. Scott, PPD/RAL.1.

Miami-2008, 17 Dec 2008 Presented by: W. G. Scott, PPD/RAL. 54

2τL2τL1L0

2222μeτμe

2μL2μL1L0

2222eτμeτ

2eL2eL1L0

2222τμeτμ

mλmλλ)zyx)(dm)(m2mm2d(m

mλmλλ)zyx)(dm)(m2mm2d(m

mλmλλ)zyx)(dm)(m2mm2d(m

32Δ

31213

L23

31222

21

41

L1

32Δ

321

2212

31

51

L0

C Tr 3L

2LL9L9Lλ C Tr

3L

L6L3LL7L/23Lλ

C Tr 3L

L2L/2L7LL3L/2Lλ

0207LL656L64LL512L 41

212

2213 3

2

)mmm(

mmm2

τμe

τμe

etc. etc. 0 )NN (Tr 0 )NN (Tr

3L )L L (Tr 2L )L L (Tr I )L L (Tr

22

L1L

23

3L2

2L1L

2N2N1N0

T23N

2L2L1L0

T23L

NλNλIλ 0 ]Ci[L, /3 C Tr

Lλ Lλ Iλ 0 ]Ci[N, /3 C Tr

Incredibly, all the remaining equations are either redundant or serve only to fix the Lagrange multipliers:

Differentiate the Mass Constraints

Our Equations get modified: (i.e. must add-in Lagrange multipliers λ)

but stillJarlskogCovariant

Solving explicitly:

If the action were the “right” one, the Lagrange multipliers would vanishfor the experimental mass values!

e.g.

Always True???

Koiderelation

JarlskogScalars!!