Top Banner
Field-Oriented Control of Induction Machine
16
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MEP_FOC.ppt

Field-Oriented Control of Induction Machine

Page 2: MEP_FOC.ppt

• IM is superior to DC machine with respect to size, weight, inertia, cost, speed

Why FOC ?

• DC motor is superior to IM with respect to ease of control– High performance with simple control due de-coupling

component of torque and flux

• FOC transforms the dynamics of IM to become similar to the DC motor’s – decoupling the torque and flux components

Page 3: MEP_FOC.ppt

Basic Principles DC machine

Current in

Current out

a

f

By keeping flux constant, torque can be controlled by controlling armature current

Te = k If Ia

Page 4: MEP_FOC.ppt

Basic Principles of IM

a

b

b’c’

c

Stator current produce stator flux

s r

Interaction between stator and rotor fluxes produces torque

Space angle between stator and rotor fluxes varies with load, and speed

Stator flux induces rotor current produces rotor flux

Page 5: MEP_FOC.ppt

FOC of IM drive

Torque equation :

sse i2

p

2

3T

srr

me i

L

L

2

p

2

3T

In d-q axis :

)ii(LL

2p

23

T sdrqsqrdr

me

Page 6: MEP_FOC.ppt

FOC of IM drive

In d-q axis :

)ii(LL

2p

23

T sdrqsqrdr

me

Choose a frame such that:

rrdr

0r

rq

Page 7: MEP_FOC.ppt

FOC of IM drive

Choose a frame such that:

rrdr

0r

rq

Page 8: MEP_FOC.ppt

FOC of IM drive

)ii(LL

2p

23

T sdrqsqrdr

me

Choose a frame such that:

rrdr

0r

rq

qs

ds

si

r

sqi

rq

sdi rd

As seen by stator reference frame:

Page 9: MEP_FOC.ppt

FOC of IM drive

rsqr

r

me i

LL

2p

23

T

si

Choose a frame such that:

rrdr

0r

rq

qs

ds

r dr

qr

rsdi

rsqi

)ii(LL

2p

23

T sdrqsqrdr

me

Rotating reference frame:

Page 10: MEP_FOC.ppt

FOC of IM driveTo implement rotor flux FOC need to know rotor flux position:

(i) Indirect FOC

grrg

grg

sr

rmgr

r

r )(jdtd

iLRL

LR

0

rsliprr

sqr

sdr

rmr

r

r )(jdtd

jiiLRL

LR

0

Synchronous speed obtain by adding slip speed and rotor speed

Rotor voltage equation:

grrg

grg

rr )(jdt

diR0

gsm

grr

gr iLiL

Rotor flux equation:

Page 11: MEP_FOC.ppt

FOC of IM drive - indirect

dtd

iLRL

LR

0 rrsd

r

rmr

r

r

d component

rslipr

sqr

rm )(iLRL

0

q component

rsliprr

sqr

sdr

rmr

r

r )(jdtd

jiiLRL

LR

0

Page 12: MEP_FOC.ppt

FOC of IM drive - indirect

dtd

iLRL

LR

0 rrsd

r

rmr

r

r

d component

rslipr

sqr

rm )(iLRL

0

q component

rsliprr

sqr

sdr

rmr

r

r )(jdtd

jiiLRL

LR

0

m

*r

sd L*i r

r

sqr

*r

rmslip i

LRL

)(

m

r

r

*e

sq LL

p3T4

*i r

Page 13: MEP_FOC.ppt

FOC of IM drive - indirect

T*

*

2/3

1/s

irsq*

irsd*

isq*

isd*

ia*

ib*

ic*

CCVSI

slip r

+ +

Rotating frame Stationary frame

m

*r

sd L*i r

m

r

r

*e

sq LL

p3T4

*i r

rsq

r*r

rmslip i

LRL

)(

ej

Page 14: MEP_FOC.ppt

FOC of IM drive

grr

rs

r

rmr

r

r jdt

di

L

RL

L

R0

(ii) Direct FOC

Rotor flux can be estimated by:

Rotor flux estimated from motor’s terminal variables

srr

me i

LL

2p

23

T

Express in stationary frame

Page 15: MEP_FOC.ppt

FOC of IM drive

grr

rs

r

rmr

r

r jdtd

iLRL

LR

0

(ii) Direct FOC

)j(jdt

)j(di)jii(

LRL

)j(LR

0 rqrdrrqrd

sqsdr

rmrqrd

r

r

dti

LRL

LR

rqrsdr

rmrd

r

rrd

dti

LRL

LR

rdrsqr

rmrq

r

rrq

d q

rd

rq

2rq

2rdr

Page 16: MEP_FOC.ppt

FOC of IM drive - direct

T*

r*2/3

isq*

isd*

ia*

ib*

ic*

CCVSI

TC

FC

irsq*

irsd*

ej

Te

r

srr

me i

LL

2p

23

T

grr

rs

r

rmr

r

r jdt

di

L

RL

L

R0

Rotating frame Stationary frame