Top Banner
Melissa Martin and Julia Jones, PhD. Oregon State University
15

Melissa Martin and Julia Jones, PhD. Oregon State University.

Jan 19, 2016

Download

Documents

Amie Webb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Melissa Martin and Julia Jones, PhD. Oregon State University.

Melissa Martin and Julia Jones, PhD.Oregon State University

Page 2: Melissa Martin and Julia Jones, PhD. Oregon State University.

O R E G O N

study basinsstreams

44°N

5 km

LookoutCreek

climate stationAndrews stream gage

Primet CS-2

WS 2

WS 8

WS 9

Vanmet

Hi-15

boundaries ofLookout Creek

WS 2 WS 8 WS 9

Gradient > 50% 25% > 60%

Slope length Median 150 m Median 90 m Median 60 m

Size 60 ha 15 ha 9 ha

Snow presence 6 mo. at high elev 6 mo. 1-2 weeks

Order Second order basin First order basin First order basin

Storm events 67 WR, 32 DR, 113 WRS (212)

14 WR, 7 DR, 23 WRS (44)

226 WR, 109 DR, 34 WRS (369)

Page 3: Melissa Martin and Julia Jones, PhD. Oregon State University.

peak discharge

precipitationbeforehydrographrise

event precipitation

centroid lag

start lag time to peak

event duration

maximum 15-minute precipitation intensity

baseflowat beginning

of hydrographrise

peak dischargedepth

time

Fig. 4

Page 4: Melissa Martin and Julia Jones, PhD. Oregon State University.

Compare peak discharge and precipitation for WR, DR, WRS events for each watershed

Examine relationship of hydrograph variables to intensity/timing of precipitation, under the three soil conditions listed above for each watershed

How are these different across the watersheds?

Page 5: Melissa Martin and Julia Jones, PhD. Oregon State University.

Why consider PCA? What is PCA?

- Explains variance-covariance structure

- Good for data reduction The ith PC is given by

Proportion of total population variance due to the kth PC is equal to

1 1 2 2' ...i i i i ip pY e X e X e X e X

( ) ' 1, 2,...,

( , ) ' 0i i i i

i k i k

Var Y i p

Cov Y Y i k

e Σe

e Σe

1 2 ...k

p

Page 6: Melissa Martin and Julia Jones, PhD. Oregon State University.

Examine the 10 hydrograph variables for normality

Chi-square plot for WS2 (untransformed variables)

sort(d)

Qch

i

0 20 40 60

51

01

52

02

5

Chi-square plot for WS2 (log transformed variables)

sort(d2)

Qch

i2

0 20 40 60 80 100

51

01

52

02

5

Page 7: Melissa Martin and Julia Jones, PhD. Oregon State University.

Obtain the coefficients of the PC’sVariable

ltotalprecip 0.400 0.028 -0.436 0.144

lmaxprecip -0.058 0.162 -0.465 -0.833

lprerunoff 0.172 -0.623 -0.166 -0.190

lstartlag 0.135 -0.652 -0.037 0.023

lcentroidlag 0.287 -0.221 0.330 -0.185

ltimetopeak 0.372 0.054 0.015 0.081

leventdur 0.445 0.124 -0.055 0.070

lqbase 0.215 0.062 0.599 -0.440

lqpeak 0.400 0.173 -0.244 0.077

lrunoffratio 0.406 0.243 0.183 -0.051

Variance 4.198 1.868 1.217 0.941

cum % of total var.

42.0 61.2 73.4 82.8

1e 2e 3e 4e

]734.1)[ln(406.0...]644.2))[ln(max058.0(]616.4)[ln(400.0ˆ1 orunoffratiprecipptotalpreciy

]734.1)[ln(243.0...]644.2)[ln(max162.0]616.4)[ln(028.0ˆ 2 orunoffratiprecipptotalpreciy

Page 8: Melissa Martin and Julia Jones, PhD. Oregon State University.

How many PC’s to choose?

Four PC’s are included in all principal component analyses

i

pro

p

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Screeplot for WS2

Page 9: Melissa Martin and Julia Jones, PhD. Oregon State University.

Biplots: A 2-dimensional representation

Comp.1

Co

mp

.2

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

1

2

3

4

5

6

7

8

910

11

1213

14 1516

17

18

19

20

21

22

23

24 25 26

27

2829

3031

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5051 52

5354

55

56

57

58

59

60

61

62

63

6465

66

6768 69

70

71

72

73

74 75 76

77

78

79

80

81

82

83

84

8586

8788

89

90

91

92

93

94

95

9697

98

99

100

101

102

103

104

105

106

107

108109

110

111

112

113114 115

116

117

118

119

120

121

122123

124

125

126

127

128

129

130 131

132

133

134135

136

137

138

139

140

141

142

143

144

145

146

147

148

149150

151

152153

154

155

156

157

158

159 160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175176

177

178

179

180

181

182183

184

185

186

187

188189

190

191192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

-10 -5 0 5 10

-10

-50

51

0

ltotalprecip

lmaxprecip

lprerunofflstartlag

lcentroidlag

ltimetopeakleventdur

lqbase

lqpeaklrunoffratio

Biplot for storm events for WS2

Page 10: Melissa Martin and Julia Jones, PhD. Oregon State University.

-4 -2 0 2 4

y2hat

-20

24

y1h

atScatterplot of (y2hat,y1hat) for WS2

wrdrwrs

Storm event type for WS2

Page 11: Melissa Martin and Julia Jones, PhD. Oregon State University.

WS2 (60 ha) WS8 (15 ha) WS9 (9 ha)Gradient > 50% 25% > 60%

Slope length Median 150m Median 90m Median 60m

Snow presence 6 mo. at high elev 6 mo. 1-2 weeks

PC1 Magnitude of storm (no maxprecip)

Magnitude with maxprecip, no qbase

Magnitude, no qbase

PC2 Timing Antecedent vs. timing “Full” timing

PC3 Antecedent wetness vs. totalprecip and maxprecip

Centroidlag, qbase vs. maxprecip

Antecedent wetness

Event type PCA Fairly consistent-for DR events, PC3 is measure of maxprecip

Not consistent, but sample sizes are small

Fairly consistent-for WR events, PC3 is measure of peak discharge (instead of qbase)

Page 12: Melissa Martin and Julia Jones, PhD. Oregon State University.

Not good for WS9 Not good for WS8

Chi-square plot for WS9 (log transformed variables)

sort(d2)

Qch

i2

10 20 30 40

51

01

52

02

5

Chi-square plot for WR events in WS8

sort(d3)

Qch

i3

7 8 9 10 11 12

51

01

52

0

Page 13: Melissa Martin and Julia Jones, PhD. Oregon State University.

Statistical models: Factor analysis, two-way MANOVA, blocking, restricted date ranges, PCA regression

Hydrograph properties: Getting more storm events for WS8 (GetPQ), creating software for HJA

Page 14: Melissa Martin and Julia Jones, PhD. Oregon State University.

Slide 1: Photograph courtesy of Julia Jones. Slide 3: HJ Andrews Experimental Forest figure

from Perkins and Jones, Snow and physiographic controls, 1997.

- Information about the watersheds and event classification: Perkins and Jones, Snow and physiographic controls, 1997.

Slide 4: Hydrograph figure from Perkins and Jones, Snow and physiographic controls, 1997.

Slide 6: The result quoted is Result 8.1, found in Johnson, Richard A. and Wichern, Dean W. Applied Multivariate Statistical Analysis, 2002. Fifth edition, Prentice Hall, Upper Saddle River, New Jersey. Page 428.

Page 15: Melissa Martin and Julia Jones, PhD. Oregon State University.

Desiree Tullos for creating the EISI program Julia Jones and Tom Dietterich for

mentoring help on this research project Reed Perkins for running GetPQ to create

the hydrograph data set The entire HJA staff Fellow EISI participants