Top Banner
Geophysical Fluid Dynamics Laboratory Processes controlling U.S. background ozone extremes and trends over 1980-2015 MEIYUN LIN (Princeton University & NOAA GFDL) BOSA workshop, Denver, March 28-29, 2017
32

meiyun lin - Geophysical Fluid Dynamics Laboratory

Feb 23, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: meiyun lin - Geophysical Fluid Dynamics Laboratory

Geophysical Fluid Dynamics Laboratory

Processes controlling U.S. background ozone extremes and trends over 1980-2015

MEIYUN LIN(Princeton University & NOAA GFDL)

BOSA workshop, Denver, March 28-29, 2017

Page 2: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

Major challenges for western U.S. air quality management

MAJOR CHALLENGES: (1) Deep stratospheric intrusion events in spring(2) Rising Asian emissions and global CH4(3) More frequent wildfires in summer(4) Warming climate

à NEED PROCESS-LEVEL UNDERSTANDING ON DAILY TO MULTI-DECADAL TIME SCALES 2

(ppb)

Mean Background in GFDL-AM3(Lin et al., 2012ab; April-June 2010)

Los Angeles

Denver 70

Background NAAQS

Obs.ann

ual4

thhighestM

DA8O3

Fig. 17 from Lin et al. (ACP, 2017), data c/o R. Payton (EPA)

Page 3: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

GFDL-AM3

Satellites

In situ

Surface networks

• Stratospheric versus Asian influences on springtime high-O3 events over the WUS

• How does interannual variability of meteorology modulate transport pathways of Asian pollution and stratospheric intrusions?

• Long-term trends of ozone in US surface air and aloft

• To what extent wildfire emissions contribute to WUS summertime O3 variability?

• Summary of policy-relevant messages

Today’s presentation

3

à Reconciling observations and models à Roles of rising Asian emissions versus US domestic controls

Page 4: meiyun lin - Geophysical Fluid Dynamics Laboratory

Lin et al. (JGR, 2012a, 2012b)

Asian and stratospheric influences on springtime high-O3 events at IMW sites

Hi-R

es G

FDL-

AM

3

CASTNET (>1.5 km; Apr-Jun 2010)

Background(Bias-corrected)

O3Strat(Bias-corrected)

Asian

75th

25th

min

max

NAAQS

20

40

60

80

100

Page 5: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory 5

O3 =a+bt +ct2

Why does ozone measured at Lassen California show a leveling-off trend in the 2000s?

(Figure c/o D.D. Parrish)

Page 6: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory 6

(2016)

(2011)

NASA AIRS CO (500 hPa, March-April)

(Changes in 700 hPa AM3 CO tracer, 2000-2012 minus 1980-1998)

Mauna Loa (Lin et al., Nature Geosci., 2014)

Lassen

A poleward shift in transport pathways of Asian pollution in the 2000s plays a role

Lassen

Lassen

Page 7: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

OBSAM3

BGO3

7

1999 (La Niña) à

MDA8 O3 (ppb) at Gothic Colorado (2.9 km a.s.l.)

O3Strat

BGO3

OBSAM3

Following a La Niña winter, more frequent stratospheric intrusions reaching IMW sites in spring

Chiricahua NM, Arizona (1.5 km a.s.l.)

2011 (La Niña) à

v

O3Strat

v v

v

àPotential for developing seasonal prediction [Lin et al., Nature Commun., 2015]

Page 8: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

75th

25th

50th

8

Year-to-year variability in springtime high-O3 events over WUS tied to stratospheric influence

O3Strat

1990

EmissionsheldconstantNudgedto“real”winds

Stratosphe

ricCon

tribution(ppb

)

April-May

22 sites (>1.5 km)

2012• Large IAV due to STT can confound attribution of observed O3 trends

calculated over short record length

Lin et al., Nature Communications, 2015

Page 9: meiyun lin - Geophysical Fluid Dynamics Laboratory

RCP4.5

Nor

mal

ized

to Y

2000

RCP8.5(AM3 BASE)

Figure 1 of Lin et al. (ACP, 2017): Emission data from Lamarque et al. (2010, 2012);Satellite (GOME/SCIAMACHY) data from KNMI (www.temis.nl)

Changes in anthropogenic emissions of NOx

Page 10: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

Baseline O3 trends derived from observations and free-running chemistry-climate models differ by a factor of 2 (Parrish et al., 2014)

OBS (Spring) Free-running CMIP5 models

These discrepancies reflect a combination of factors: (1) Internal climate variability (Lin et al., 2014; 2015a; Barnes et al., 2016)(2) Measurement sampling biases (Lin et al., 2015b)(3) Model difficulty resolving observed remote baseline conditions (Lin et al., 2017)

Mt. HappoJapanese MBLU.S. Pacific MBLN. American FTLassen NP

Need model hindcasts driven by observed meteorology (next slide)

Page 11: meiyun lin - Geophysical Fluid Dynamics Laboratory

Influence of measurement sampling biases

Lin, M.; Horowitz, LW; Cooper, OR et al. [GRL, 2015]

Ozo

ne A

nom

aly

(ppb

)

Year (April-May)

[Cooper et al.][Cooper2010, Nature]

Year (April-May)

11

Western N. American FT (3-8 km altitude)

à 15-year trends driven by internal climate variability can be as large as emission-driven trends.à Even with co-sampling, free-running CCMs are not expected to reproduce the trends.

Nudged to “real” winds

BASE true average

Sampling biases

40 60 80

1984

2005

FIXEMIS 500hPa O3

Page 12: meiyun lin - Geophysical Fluid Dynamics Laboratory

Model baseline sampling approach for evaluating O3 trends at IMW sites

Baseline(Lassen)

With

in a

~20

0x20

0 km

2

mod

el g

rid c

ell

Pollution

Observed spring MDA8 O3 trend 1988-2014

AM3_BASE surface AM3_BASE 700 hPa, filtered

-0.8

-0.4

0.0

0.4

0.8

Lin, M., Horowitz L.W., Payton, R., Fiore, A.M., Tonnesen, T. [ACP, 2017]

Larger circles indicate significant trends (p<0.05)

ppb yr-1

Page 13: meiyun lin - Geophysical Fluid Dynamics Laboratory

Median springtime MDA8 O3 trends at Great Basin NP

See Figure 13 of Lin et al. (ACP, 2017) for additional analysis for other sites

àMost of the observed variability reflect changes in the backgroundàThe effects of US NOx controls (BASE minus NAB) are < 0.1 ppb yr-1

13

Page 14: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

SPRING US surface MDA8 O3 trends over 1988-2014

Figure 7 from Lin et al. [ACP, 2017]

OBS AM3_BASE

Larger circles indicate significant trends (p<0.05)

ppb yr-1

95th

50th

(Baseline filtering for WUS)

Page 15: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

SPRING US surface MDA8 O3 trends over 1988-2014

Figure 10 from Lin et al. [ACP, 2017]

50th

95th

Background FIXEMIS

ppb yr-1Small circles indicate insignificant trends (p>0.05)

Page 16: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

SUMMER US surface MDA8 O3 trends over 1988-2014

Figures 8 and 11 from Lin et al. [ACP, 2017]

95th

50th

OBS AM3_BASE

ppb yr-1Larger circles indicate significant trends (p<0.05)

(Baseline filtering for WUS)

cv95th

Background FIXEMIS

Page 17: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

2003-2012 minus 1981-1990

Asian (~50%)

CH4 (~15%)

Wildfires (6% in spring; 12% in summer)

BASE

MeteorologyBackground

Del

ta O

3[p

pb]

MAM JJA

Summarizing drivers of decadal mean O3 changes from 1981-1990 to 2003-2012 over WUS

Figure 20 from Lin et al. [ACP, 2017]

Page 18: meiyun lin - Geophysical Fluid Dynamics Laboratory

Wildfires: NOT the primary driver of summer O3 IAV over WUS?

Figs 15 and 16 from Lin et al. [ACP, 2017]

Yellowstone NP (AUG)

High fire years

IAVFIRE – FIXEMIS (Aug2012)

6 ppb-6 -0

Hot and dry summers: à deeper PBLH allowing more O3 to mix

down to the surface (see also Zhang et al., 2014)à The buildup of O3 produced from regional

anthropogenic emissions (e.g., Denver / Rocky Mountain NP)

Interannual correlations (YEL O3, Tmax)

Page 19: meiyun lin - Geophysical Fluid Dynamics Laboratory

Summertime O3 in Denver correlates with temperatureFig. 17c from Lin et al. [ACP, 2017]

• Role of VOCs from fires + urban NOx (Jaffe & Wigder,2012; Baker et al., 2016)?• The 2017 Fires, Asian and Stratospheric Transport – Las Vegas Ozone Studyà Funded by Clark County (Zheng Li)à NOAA ESRL measurement team (A.O. Langford) + NASA AJAX?à GFDL-AM4 and GEOS-Chem modeling (PI: Meiyun Lin; now hiring post-doc)

Obs

erve

d M

DA

8 O

3(J

ul-A

ug 9

5th

)

Page 20: meiyun lin - Geophysical Fluid Dynamics Laboratory

Some final policy-relevant messages• can episodically increase surface MDA8 O3 by

20-40 ppb above the baseline level (~20 ppb)• The key driver of observed year-to-year

variability in springtime high-O3 events >70 ppb

• contributes ~5 ppb to mean WUS O3background in spring

• The key driver of multi-decadal WUS background O3 increases (~65%; 0.2 ppb/yr)

• can enhance monthly mean MDA8 O3 at individual sites by 2-8 ppb in some summers

• but not the primary driver of observed O3 year-to-year variability at rural sites

Asian pollution

Stratosphericintrusions

Wildfires

• contributes 15% of the WUS background O3increase

Rising global methane

• contribute to raising background O3 over EUS• would have worsened the highest O3 events

over EUS if NOx emissions had not declined

More frequent hot extremes & rising BVOC emissions

Page 21: meiyun lin - Geophysical Fluid Dynamics Laboratory

Additional Slides for Q & A Discussions

Page 22: meiyun lin - Geophysical Fluid Dynamics Laboratory

Springtime ozone observed in Denver has increased at a rate similar to remote rural sites

Figure 17 from Lin et al. [ACP, 2017]

Page 23: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

Projections of near-term changes in WUS lower trop. ozone in spring (March-April-May)

23

Normalize

dto

2000

Satellites

RCP8.5

RCP4.5

RCP8.5

RCP4.5

GlobalCH4 (ppb)3000

2500

2000

1500

E.ChinaNOx emissions

1980

23

OBS (GRB,LAV,ROM)AM3BASE,nudged

Figure 14 from Lin et al. [ACP, 2017]

Page 24: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

SUMMER US surface O3 trends over 1988-2014

Figures 4 and 8 from Lin et al. [ACP, 2017]

95th

OBS AM3_BASE

ppb yr-1

(Baseline filtering for WUS)

AM3_BASE (surface, no filtering)

Page 25: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory 25

Why does AM3 in Lin et al. (2012, 2015) show smaller biases than in Fiore et al. (2014)?

à Lin et al. focus on late spring (April to early June) when the model has better skills in representing deep mixed layers

à Higher resolution (Lin et al. 2012a,b), greater skills in representing observations at high endà FIXEMIS simulation in Lin et al. (2015a) applies the 1970-2010 climatological mean emissionsà Differences in wildfire emissions may also contribute

Page 26: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory 26

Sondes AM3 (~0.5ºx0.5º) AM3 (~2ºx2º)

Sonde sites, North à SouthO3 [ppbv]

Simulations of deep SI events in GFDL-AM3 (May 28, 2010 example)

Alti

tude

(km

)

• 0.5º model better captures vertical structure• 2º model reproduces the large-scale view

Lin MY et al (JGR, 2012b): Springtime high surface ozone events over the WUS … 26

Page 27: meiyun lin - Geophysical Fluid Dynamics Laboratory

GFDL-AM3

Lidar (Langford)

Flight track

30 60 15090 120[ppb]

Alti

tude

(km

)

S. California (May 23, 2010)

O3Strat

Background(zero out US anthrop. emissions)

OBS, AM3New Standard

100

75

25

50

5SurfaceO3(ppb

),M

DA8 May 24

Jun/1/2010May/13/2010

CalNex2010

O3Strat

27Lin M.Y. et al (JGR, 2012b), Springtime high surface ozone events over the WUS:Quantifying the role of stratospheric intrusions

GFDL-AM3 model captures observed deep stratospheric intrusions over WUS

Page 28: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

Prob

abili

ty D

ensi

ty

28

Neutral: µ = 56.5,σ = 7.5El Niño (1998, 2010): µ = 56.9,σ = 7.3La Niña (1999, 2008, 2011): µ = 58.5,σ = 7.9Pinatubo (1992, 1993): µ = 54.3,σ = 6.5

Observed daily max 8-h average O3 [ppbv], Apr-May

Statisticaltesting

Observed changes in surface O3 distribution, particularly in the upper tail

Lin M. et al (Nature Communications, 2015)§ Little change in WUS surface air during El Niño despite increased UTLS O3

burdens reported previously [e.g. Langford1998; Bronnimann2004; Neu2014].

Page 29: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

Surface O3 distribution in high vs low background springs

19911999200820112012

19921993

Meiyun Lin et al. (Nature Communications, 2015)

(N.Americananthrop.emissionssettozero)

Prob

abilityDen

sity

29

NAAQS

Page 30: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

GFDL-AM3 captures interannual variability of O3 anomalies associated with high temperatures

Penn State University

à But O3 deposition sink to vegetation must be reduced by 35% to match the observed anomaly during the severe drought of 1988

Meiyun Lin et al. [ACP, 2017]

R2 (OBS, AM3_BASE) = 0.67R2 (OBS, AM3_FIXEMIS) = 0.30

July

1980 2015

DEP*0.65

Page 31: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

Influence of droughts on ozone removal

Meiyun Lin et al. [ACP, 2017]

Penn State Univ.OBSAM3BASEDEP*0.65

à Reduced stomatal uptake under drought stress

à Influence the highest ozone events

à Model challenges in simulating such land-biosphere couplings (not represented in the Wesley scheme)

Page 32: meiyun lin - Geophysical Fluid Dynamics Laboratory

GeophysicalFluidDynamicsLaboratory

If NOx emissions had not declined, more frequent hot extremes since 1990 would have worsened the highest O3 events over EUS

Meiyun Lin et al. [ACP, 2017]

JJA

1990-2012 trend in biogenic isoprene emissions

95th percentile MDA8 O3 trend in AM3_FIXEMIS

1990-2012 trend in the frequency of warm days (above the 90th percentile for 1961-1990 base)

Larger circles indicate significant trends (p<0.05)