Top Banner
Meiosis
26
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Meiosis Notes

Meiosis

Page 2: Meiosis Notes

Chromosome Number• Organisms have tens of thousands of genes that

determine individual traits. The more closely related two organisms are, the more genes they’ll have in common

• Genes are lined up on chromosomes that can hold thousands of genes.

• In body cells of animals and most plants, chromosomes occur in pairs.

• One chromosome in the pair came from the male parent and one came from the female parent.

• These pairs are called homologous chromosomes – each pair has genes for the same traits

• A cell with two of each kind of chromosome is called diploid (2n).

Page 3: Meiosis Notes

Chromosome Number• Organisms produce gametes (sex cells) that

contain one of each kind of chromosome.• A cell with only one of each kind of

chromosome is called haploid (n).• Sex cells have one of each kind of

chromosome so that when they combine (as egg and sperm do during fertilization), the resulting cell is diploid.

• Each species has a specific number of chromosomes. – Humans have 23 pairs (46 total)– Fruit Flies have 4 pairs (8 total)– Dogs have 39 pairs (78 total)

Page 4: Meiosis Notes

Human Chromosomes• Humans have 23

pairs of chromosomes (46 total)

• 22 pairs of autosomes

• 1 pair of sex chromosomes

• Half of each pair came from one parent and half came from the other parent

Page 5: Meiosis Notes

Meiosis: Why?

• Mitosis divides one diploid cell to form two diploid cells– For example: A human cell with 46

chromosomes divides to form two cells with 46 chromosomes.

• If each parent were to pass on a diploid cell to the offspring, that offspring would then have 4 copies of each chromosome– 46 chromosomes from each parent would yield

a 92 chromosome offspring

• Meiosis allows for two divisions to divide a one diploid cell into four haploid cells.

Page 6: Meiosis Notes

Meiosis: Where and Who?• Meiosis takes place in

the gonads (sexual organs)– For humans, these are

the ovaries and testes– The process of meiosis

produces egg and sperm cells

• Two gametes come together by fertilization– The haploid sperm and

egg join to form a diploid zygote

Page 7: Meiosis Notes

Meiosis Phases

• Meiosis I– Prophase I– Metaphase I– Anaphase I– Telophase I

• Meiosis II– Prophase II– Metaphase II– Anaphase II– Telophase II

Page 8: Meiosis Notes

Interphase

• Before Meiosis (just like before Mitosis) the cell must prepare for division:– Cells increase in size– DNA is replicated– Necessary proteins

and RNA are synthesized

• During this phase, chromosomes are not yet visible.

Page 9: Meiosis Notes

Meiosis: Prophase I

• Chromosomes become visible• Nuclear envelope disappears• Centrioles head to opposite

poles and spindle forms• Homologous chromosomes

(one pair of sister chromatids from the mother and one from the father) pair up to form a tetrad

• The tetrad pairs up so tightly that crossing over occurs

Page 10: Meiosis Notes

Crossing Over

Page 11: Meiosis Notes

Meiosis: Metaphase I

• Spindle fibers attach to the centromeres

• Tetrads line up along the equator (or middle of the cell)

• Note that homologous chromosomes line up together along the equator in Meiosis where in Mitosis, they lined up independently to one another.

Page 12: Meiosis Notes

Meiosis: Anaphase I

• Homologous chromosomes separate and head to opposite ends of the cell

• Centromeres DO NOT split – Sister chromatids will stay together until the next division

Page 13: Meiosis Notes

Meiosis: Telophase I and Cytokinesis

• Spindle is broken down• Chromosomes uncoil• Cytoplasm divides into two cells

Page 14: Meiosis Notes

Meiosis: Prophase II

• Chromosomes become visible

• Spindle forms• If nuclear

membrane reformed after Telophase I, it will break down now

Page 15: Meiosis Notes

Meiosis: Metaphase II

• Spindle pulls the sister chromatids to the middle of the cell where they line up along the equator in random order (just as they did during Mitosis)

Page 16: Meiosis Notes

Meiosis: Anaphase II

• Centromere of each sister chromosome splits and each sister chromatid heads for an opposite pole

Page 17: Meiosis Notes

Meiosis: Telophase II and Cytokinesis

• Nuclei reform (nuclear envelope reappears)

• Spindle breaks down• Chromosomes uncoil• Cytoplasm divides into a total of four

haploid cells that will become gametes• Each cell contains

one chromosome from each homologous pairLet’s See

it!

Page 18: Meiosis Notes

Variability

• Meiosis has a large role in maintaining variability in a species.

• Through sexual reproduction, offspring are not simply replicas of one organism but a genetic combination of two organisms

• Crossing over during Prophase I insures that a parent organism can pass on different gametes each time it reproduces, creating a variety of offspring.

Page 19: Meiosis Notes

Chromosomal Mutations• Chromosomal mutations can happen

when chromosomes break and do not repair correctly.

pg. 306

Page 20: Meiosis Notes

Chromosomal Mutations• Errors can also occur during Meiosis. • Sometimes the homologous chromosomes do not

separate properly – this is called nondisjunction

• This results in gametes with either an extra copy of a chromosome or no copy at all.

Norm

al

Exam

ple

Non

dis

jun

cti

on

E

xam

ple

s

Page 21: Meiosis Notes

Types of Nondisjunction

• Remember: In normal fertilization, a zygote would get one copy of a chromosome from each parent resulting in one pair of each type of chromosome (humans: 23 pairs)

• Monosomy – when the zygote gets a copy of a chromosome from only one parent so it is missing one chromosome– Most zygotes with monosomy do not survive– One exception is the case of Turner’s Syndrome

• Females have only one X chromosome instead of two• These people will still have female sexual characteristics

but they will generally be underdeveloped

Page 22: Meiosis Notes

Types of Nondisjunction

• Trisomy – In this case, the zygote gets one copy of a chromosome from one parent and two copies from the other parent resulting in three copies rather than the normal two copies.– Down Syndrome (Trisomy 21) – This person has

three copies of the 21st chromosome. This can lead to mental retardation, susceptibility to certain illness or diseases, and a shorter life span

– Klinefelter's syndrome (XXY) – This person has two copies of the X chromosome as well as a copy of the Y chromosome. This person will be male but may suffer from underdeveloped testicles and infertility.

Page 23: Meiosis Notes

Identifying Chromosomal Disorders

• To determine whether or not an organism has the proper number of each chromosome, one can look at a karyotype

• To make a karyotype a photograph is taken of the paired chromosomes during metaphase

• These pairs are cut out and arranged in a chart according to length and location of centromere

• Once arranged, it is easy to see if there are any extra or missing chromosomes

This individual has an extra Y

chromosome

Page 24: Meiosis Notes

Cell Development• In the development of most multicellular organisms, a

single cell (fertilized egg) gives rise to many different types of cells, each with a different structure and corresponding function.

• The fertilized egg gives rise to a large number of cells through cell division, but the process of cell division alone could only lead to increasing numbers of identical cells.

• As cell division proceeds, the cells not only increase in number but also undergo differentiation becoming specialized in structure and function.

• The various types of cells (such as blood, muscle, or epithelial cells) arrange into tissues which are organized into organs, and, ultimately, into organ systems.

Page 25: Meiosis Notes

Differentiation

• Nearly all of the cells of a multicellular organism have exactly the same chromosomes and DNA.

• During the process of differentiation, only specific parts of the DNA are activated; the parts of the DNA that are activated determine the function and specialized structure of a cell.

• Because all cells contain the same DNA, all cells initially have the potential to become any type of cell.

• Once a cell differentiates, the process can not be reversed.

Page 26: Meiosis Notes

Stem Cells

• Stem cells are unspecialized cells that continually reproduce themselves and have, under appropriate conditions, the ability to differentiate into one or more types of specialized cells.– Embryonic cells, which have not yet differentiated into

various cell types, are called embryonic stem cells.– Stem cells found in adult organisms, for instance in

bone marrow, are called adult stem cells.

• Scientists have recently demonstrated that stem cells, both embryonic and adult, with the right laboratory culture conditions, differentiate into specialized cells.