Top Banner

of 11

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

PowerPoint

Hematite-based Sodium Ion BatteryYi-Hsuan WuProf. Jeng-Kuei Chang08.04.20151Brief Introduction ($)

Journal of Power Sources 245 (2014) 967e978Large-scale batteryReservesCostLiNaAlmost-infinite resource

Theoretical volume change ~ 215%Theoretical specific capacity = 1007 mAh/gConversion of the iron oxide accompanied by SEI formation.NaxFe2O3Fe0 / Fe+2Fet2 / Fet3Oxidative feature is not completely clearElectrochemical rxn mechanismJournal of Power Sources 245 (2014) 967e978Anode MaterialSynthesis MethodAnode CompositionElectrolyteCapacityCycle-life Retention2013ChemCommFe2O3@GNSEthonal-dispersion+ Cacilnation80:20(AM:PVDF)1 M NaPF6 EC: DMC (1:1) 350(200 mA/g)(10 nd)400(100 mA/g)(200 cycles)2014 JPSg-Fe2O3/a-Fe2O3Heat pyrolysis65:20:15(AM:CB:CMC)1MNaClO4 EC:DEC (2:1)300(130 mA/g)(2 nd)280(130 mA/g)(60 cycles)2015 CM-FeOOH(Nanorods)Thermal hydrolysis50:30:5:15(AM:G:Sp:CMC)1 M NaClO4PC/5 wt% FEC523(80 mA/g)(2 nd)200(500 mA/g)(100 cycles)2015Ele. ActaFe2O3-RGO microwave 80:10:10 (AM:Sp:PVDF)1 M NaClO4 EC:PC (1:1 w:w) 250(100 mA/g)

300(50 mA/g)(50 cycles)2015Ele. ActaFe2O3MCMB Spex-milling 80:10:10 (AM:Sp:PVDF)1 M NaClO4-EC:DMC (1:1 w:w) 150(20 mA/g)(2 nd)145(20 mA/g) (40 cycles)2015 JMCAa-Fe2O3@TiO2 (Core-shell)Thermal hydrolysis70:20:10(AM:AB:PVDF)1 M NaClO4 /PC450(100 mA/g)(2 nd)300(100 mA/g)(200 cycles)2015 JMCAa-Fe2O3(Core-shell)Hydrothermal75:15:10(AM:AE:LA 132)1 M NaPF6EC/DEC(V/V=1/1)733(6000 mA/g)300 (100 mA/g)(80 cycles)2015 JPSa-Fe2O3/ (rGO)Hydrothermal80:15:5(AM:CB:CMC)1 M NaClO4EC/DEC1170(37 mA/g)(1 st)370(100 mA/g)(150 cycles)2015 Powder TechnologySnO2Fe2O3Hydrothermal80:10:10(AM:AC:CMC)1 M NaClO4PC/2 vol% FEC300 (25 mA/g)(2 nd)200(50 mA/g)(50 cycles)

Fe(NO3)39H2OEthanol GNS 40 C for 24 hSonicated for 10 minFe(NO3)39H2O/GNSFe2O3@GNS200 C for 10 h

Fig. 1 Raman spectra of the pristine GNS, Fe2O3, and Fe2O3@GNS, the Mossbauer spectrum of [email protected] splitting distribution Fe2O3XRD patterns of GNS, Fe2O3, Fe2O3/GNS and Fe2O3@GNS.

TG curve of the Fe2O3@GNS sample.

SEM image of Fe2O3@GNS, Nitrogen adsorptiondesorption isotherms of the pristine GNS and Fe2O3@GNS, STEM image high-resolution STEM image of Fe2O3@GNS.

(a) CV curves at a scan rate of 0.05 mV s1 for Fe2O3@GNS between 0.05 and 3 V vs. Na+/Na. (b) Dischargecharge curves of the first 5 cycles. (c) Cycling performance of the Fe2O3/GNS and Fe2O3@GNS samples at a current of 100 mA g1, and coulombic efficiency of the Fe2O3@GNS sample. (d) Dischargecharge profiles at selected cycles.(e) Rate capability of the Fe2O3@GNS sample. (f) Cycling performance for Fe2O3@GNS cycled at currents of 200, 500, and 1000 mA g1.

Cycling performance of pure GNS at a current of 100 mA/g.Conclusion (Literature)(1) GNS builds the electron transport path.(2) The small size of the active material Fe2O3 significantly reduces the Na diffusion length.(3) The active material Fe2O3 anchored onto GNS can effectively enhance the strain-accommodating capability and prevent the pulverization of Fe2O3 upon Na-ion insertionextraction.Vision SEI formation mechanism and Fe2O3-graphene-compostie have been studied. Fe2O3 nanorods (by-product from hydrothermal synthesis).