Top Banner
Paul TC- 2007 Free radical substitution Eletrophilic addition cleophilic substitution Eliminatio n Addition – Elimination Electrophilic substitution sterification Alkaline hydrolysis Nucleophilic addition ORGANIC REACTION MECHANISMS AS A2 Dehydratio n Friedel- Crafts Brominatio n Nitration Acylation Addition polymerisation Bond fission Hydration of alkene Formation of polypeptides Formation of polyamides Formation of polyesters Bromination of alkene
20

Mechanisms.pps

Aug 28, 2014

Download

Documents

Kshitiz Joshi
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mechanisms.pps

Paul TC-2007

Free radical substitution

Eletrophilic addition

Nucleophilic substitution

Elimination

Addition – Elimination

Electrophilic substitution

Esterification Alkaline hydrolysis

Nucleophilic addition

ORGANIC REACTION MECHANISMSAS A2

Dehydration

Friedel-Crafts

Bromination

Nitration

AcylationAddition polymerisation

Bond fission

Hydration of alkene

Formation of polypeptides

Formation of polyamides

Formation of polyesters

Bromination of alkene

Page 2: Mechanisms.pps

Paul TC-2007

BOND FISSION

BrBr

BrBr

Br

Br

+Br

-

+

2 xHomolytic fission

Heterolytic fission

Free radicals(= an unpaired electron)

Electrophile Nucleophile(= electron pair acceptor) (= electron pair donor)

(Breaking of the bond)

Reaction of ALKANES = Free radical substitution

Reaction of ALKENES = Electrophilic additionBr2 Br +. + Br -

Br2 2 Br.

HOMOLYTIC FISSION

HETEROLYTIC FISSION

Curly arrow

One electron moving

A pair of electrons moving

Page 3: Mechanisms.pps

Paul TC-2007

Initiation

Propagation

Termination

FREE RADICAL SUBSTITUTION MECHANISM

Least favourable

Possible

Major organic product

BrBr BrBr BrBr 2 Br2 Br2 Br

C

H

H H

H

Br C

H

H

H

C

H

H

H

C

H

H

H

BrH BrH BrH

BrBrC

H

H

H

C

H

H

H

BrBr BrBr C

H

H Br

H

C

H

H Br

HHBr BrBr BrBrBr

+

+

+

+

+

2 Br Br2

CH3+ Br2 CH3Br + Br

CH4 + Br CH3+ HBr

Br2 2 Br

C

H

H

H

C

H

H

C

H

H

H

H

H

+

2 CH3 H3C-CH3

C

H

H

H

C

H

H

H

BrC

H

H

H

C

H

H

H

C

H

H Br

H

+

Most favourableH3C + Br CH3Br

Initiation

Propagation

Termination

Page 4: Mechanisms.pps

Paul TC-2007

2-methylpropene

CC

H3C

H3C

H

H

Br

Br-

+

C+

C

Br

Carbocation

(Electrophile)

:Br -Nucleophile

H3C

H3CHH C

C

BrBr

BROMINATION OF ALKENE

H3C

H3CHH

1,2-dibromo-2-methylpropane

Page 5: Mechanisms.pps

Paul TC-2007

HYDRATION OF ALKENE MECHANISM

CC

H3C

H3C

H

H

2-methylpropene

H+

C+CH

H3C H3C

H

H

O

HH

CC

H

O+

H3C H3C

H

H

HH

2-methylpropan-1-olC

C

H

O

H3C H3C

H

H

H

H+

Page 6: Mechanisms.pps

Paul TC-2007

H

Cl H

C = C

H

Cl H

C = C

H H

Cl H

C C

H H

Trigonal planar

Cl H

C = C

H H

+

Cl H

C C

H H

Cl H

C C

H H

Cl H

C = C

H H

+

Repeat unit

Repeat unit

= Any 2 consecutive C along the C chain

Cl H

C C

H H n

or

Chloroethene

Polychloroethene

120o

Trimer

Monomer

Dimer

ADDITION POLYMERISATION MECHANISM

Page 7: Mechanisms.pps

Paul TC-2007

NUCLEOPHILIC SUBSTITUTION MECHANISM

ELECTRON CLOUD from the nucleophile SHIFTS toward +C atom, and a DATIVE COVALENT BOND starts to form.

As this happens, the C – X bond is WEAKENS and eventually BREAKS HETEROLITICALLY.

R - X + :Nu- R - Nu + :X-

OH - Cl -δ+ δ-

H

C

H

Cl

HH

C

H

HO

H

δ+ δ-

+ +

Page 8: Mechanisms.pps

Paul TC-2007

H

Cl

H

C

H

C

H

H

OH -

Cl -

Cl

H

C

H

C

H

H

-

H

C

H

C

H

H

ELIMINATION MECHANISM

H2O +

+

Page 9: Mechanisms.pps

Paul TC-2007

H+

H

O

H

C

H

C

H

H

H

H

O

H

C

H

C

H

H

H

H+

H

H

CC

H

H

O

H

H+

DEHYDRATION

+H+

Page 10: Mechanisms.pps

Paul TC-2007

C O

HO

R+

H

OR

+

H+ C O

HO

R

H+

C O

HO

R

+

H

ORH

H

HC O

HO

R

O

R

+

R

CO

RO +

H+HC

O

RO

R

H2O

+

ESTERIFICATIONMECHANISM

Protonation Nucleophilicattack

Protontransfer

Waterelimination Proton

elimination

Page 11: Mechanisms.pps

Paul TC-2007

ADDITION-ELIMINATION MECHANISM(NUCLEOPHILIC SUBSTITUTION)

Cl-δ+ δ-

HO

C

H

O

δ+ δ-

Cl

C

H

O

OH-

δ+ δ- δ+ δ-C O-

OH

H

ClNucleophilic addition

EliminationNucleophilic substitution

δ+

δ-

+

+

Page 12: Mechanisms.pps

Paul TC-2007

ALKALINE HYDROLYSIS MECHANISM

OH-

RC O

R

O

Nucleophilicattack

C O-

R

HO Na+

OR

O-R Na+

Break down of the tetrahedralintermediate

C OR

OHOHR C OR

O-Na+ Proton transfer

Page 13: Mechanisms.pps

Paul TC-2007

NO2+

NO2

+

HH NO2

NITRATION

H++

Formation of the electrophile: NO2+

nitroniumion

HNO3 + H2SO4 H2NO3+ + HSO4

-

H2NO3+ H2 O + NO2

+

H+ + HSO4- H2SO4Regeneration of the catalyst:

Electrophilic substitution:

HSO4-

HNO3 + H2SO4 H2O + NO2+ + HSO4

-

C6H6 + HNO3 C6H5NO2 + H2OOverall equation:

H2SO4 cat.50oC

Page 14: Mechanisms.pps

Paul TC-2007

Br+

Br

+

HH Br

BROMINATION

H++

Formation of the electrophile: Br+ Br2 + FeBr3 Br+ + FeBr4

-

H+ + FeBr4- FeBr3 +HBrRegeneration of the catalyst:

Electrophilic substitution:

FeBr4-

C6H6 + Br2 C6H5Br + HBrOverall equation:

FeCl3 cat.

Page 15: Mechanisms.pps

Paul TC-2007

CH3+

CH3

+

HH CH3

FRIEDEL-CRAFT MECHANISM

H++

Formation of the electrophile: CH3+

CH3Cl + FeCl3 CH3+ + FeCl4-

H+ + FeCl4- FeCl3 + HClRegeneration of the catalyst:

Electrophilic substitution:

FeCl4-

C6H6 + CH3Cl C6H5CH3 + HClOverall equation:

FeCl3 cat.

Page 16: Mechanisms.pps

Paul TC-2007

COCH3+

COCH3

+

HH COCH3

ACYLATION MECHANISM

H++

Formation of the electrophile: CH3CO+ CH3COCl + FeCl3 CH3CO+ + FeCl4-

H+ + FeCl4- FeCl3 + HClRegeneration of the catalyst:

Electrophilic substitution:

FeCl4-

C6H6 + CH3COCl C6H5COCH3 + HCl

Overall equation: FeCl3 cat.

Page 17: Mechanisms.pps

Paul TC-2007

NΞC - C

H

O

H

H

C

H

NΞC O -

H CΞN

δ+ δ-

+

H

C

H

NΞC O H

- CΞN

NUCLEOPHILIC ADDITION MECHANISM

oxoanion

Dative covalent bond formation

bond weakens and breaks heterolytically

This reaction is useful because the chain is extended by 1 carbon.

2-hydroxynitrile

Dative covalent bond formation

bond weakens and breaks heterolytically

δ+ δ-+

+

Page 18: Mechanisms.pps

Paul TC-2007

C

H

R

N

O

OH

C

H

H

+ +C

H

R

N

O

C

H

H

OH`

C

H

R

N

O

OH

C

H

H

OH

C

H

R

N

O

C

H

C

H

R

N

O

C

H

H

C

H

R

N

O

C

H

Peptide link(amide)

FORMATION OF POLYPEPTIDES

Repeat unit(aminoacid residue)

Peptide link(amide)

+ 2 H2O

C

H

R

N

O

C

H n

Monomer2-amino acid

Trimer

Page 19: Mechanisms.pps

Paul TC-2007

Peptide link(amide)

Peptide link(amide)

(CH2)n N

H

H

N

H

H O

(CH2)n

OH

C

O

OH

C (CH2)n N

H

H

N

H

H

(CH2)n

O

OH

C

O

OH

C

(CH2)n N

H

N

H

H

(CH2)n N

H

N

H

(CH2)n

O

C

O

C (CH2)n

O

C

O

OH

C

O

OH

C

+++

Peptide link(amide)

Repeat unit Repeat unit

2 monomers

+3 H2O

DIBASIC ACID and DIAMINE to form POLYAMIDES

(CH2)n

O

C

O

C

Repeat unit

(CH2)n N

H

N

H

Page 20: Mechanisms.pps

Paul TC-2007

Esterlink

+ +

Esterlink

Esterlink

+ 3 H2O

OH

O

CHO

O

C (CH2)n OH

O

CHO

O

C (CH2)n(CH2)nOH O H

O

CHO

O

C (CH2)n

O

C

O

C (CH2)nH(CH2)nO O

Repeat unit(2 monomers)

(CH2)nOH+

(CH2)nO O H

REACTION OF DIBASIC ACID and DIOL to form POLYESTERS

O

C

O

C (CH2)nH(CH2)nO O

Repeat unit(2 monomers)