Top Banner
© 2019 Optibrium Ltd. Optibrium™, StarDrop™, Auto-Modeller™, Card View™, Glowing Molecule™ and Augmented Chemistry™ are trademarks of Optibrium Ltd. Mario Öeren 1 [email protected] Peter Hunt 1 , David J. Ponting 2 , Matthew D. Segall 1 1 Optibrium Limited, Cambridge UK. 2 Lhasa Limited, Leeds UK. Mechanism and Prediction of UGT Metabolism 27 th August 2019
22

Mechanism and Prediction of UGT Metabolism

Apr 18, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.Optibrium™, StarDrop™, Auto-Modeller™, Card View™, Glowing Molecule™ and Augmented Chemistry™ are trademarks of Optibrium Ltd.

Mario Öeren1 – [email protected] Hunt1, David J. Ponting2, Matthew D. Segall1

1 Optibrium Limited, Cambridge UK. 2 Lhasa Limited, Leeds UK.

Mechanism and Prediction of UGT Metabolism27th August 2019

Page 2: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Overview

• UGT metabolism

− A short overview

• Mechanistic studies

− Ab initio

− Semi-empirical

• QSAR models

− Results from mechanistic studies

− Steric and orientation descriptors

• Conclusions

2

Page 3: Mechanism and Prediction of UGT Metabolism

UGT Metabolism

Page 4: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Uridine Diphosphate Glucuronosyltransferase (UGT)

• Metabolic enzyme

− Conjugation (phase II)

− 40% of conjugation reactions

− Works with endo- and xenobiotics

• Human isoforms

− Located in liver, kidneys, gut etc.

− 19 known active isoforms

− No full crystal structure available

− 1A1, 1A4, 1A9 and 2B7

4PDB ID: 2O6L

Page 5: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Reaction Types and Substrates

• O-glucuronidation

− Phenols

− Alcohols

− Carboxylic Acids

• N-glucuronidation

− Amines

− Amides

− N-heterocycles

• S- and C-glucuronidation

− Thiols and thioketones

− 3,5-pyrazolidinedione

5N. Yang, R. Sun, X. Liao, J. Aa and G. Wang, Pharmacological Research, 2017, 121, 169–183

Page 6: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Modelling Approach

• Project goals

− Isoform-specific site of metabolism models

− Isoform-specific substrate classification models

• Model should be based on fundamental physical properties

− The rate of product formation is correlated with the activation energy (Ea) of the rate limiting step of product formation

− Models are based on quantum mechanics

− Each site of metabolism is considered in the context of the whole molecule

• Pros

− It should transfer well between chemical classes

− It should be applicable beyond the training set

• Influence of the active site of each isoform

− Steric and orientation descriptors

6

Page 7: Mechanism and Prediction of UGT Metabolism

Reaction Mechanism of Glucuronidation

Page 8: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Reaction Mechanism of Glucuronidation

• Wide variety of experimental studies

− Chemical modification

− Photoaffinity labelling

− Mutagenesis studies

− Competitive inhibitors

− Homology modelling

− Docking studies

− Different mechanisms

• No previous studies using quantum mechanical modelling methods

− Density Functional Theory (DFT)

8

Glucuronic Acid

Uridine Diphosphate

Substrate

Proton Donor

Proton Acceptor

C. W. Locuson and T. S. Tracy, Xenobiotica, 2007, 37, 155–168

Page 9: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Mechanistic Studies – Simplification of the System

• Simplification of the system

− Disregard the protein

− Simplify the UDP-GA

9

Page 10: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Mechanistic Studies – Ab Initio Calculations

• Simplification of the system

− Disregard the protein

− Simplify the UDP-GA

• Identification of a transition state

− Ab initio (B3LYP/SVP)

− Generalizable for N- and O-glucuronidation

10

Paracetamol

Page 11: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Mechanistic Studies – Ab Initio Calculations

• Simplification of the system

− Disregard the protein

− Simplify the UDP-GA

• Identification of a transition state

− Ab initio (B3LYP/SVP)

− Generalizable for N- and O-glucuronidation

11

Paracetamol

Page 12: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Mechanistic Studies – Validation

• Simplification of the system

− Disregard the protein

− Simplify the UDP-GA

• Identification of a transition state

− Ab initio (B3LYP/SVP)

− Generalizable for N- and O-glucuronidation

• Validation of the transition state

− Experimental data (Vmax)

− 𝑘 = 𝐴𝑒−𝐸𝑎𝑅𝑇

− Data availability (O-glucuronidation)

− Shape specific active sites

− Noise in biological experiments

12

100

270

729

1968.3

5314.41

145 165 185 205 225

ln (

Vm

ax)

Ea (kJ mol−1)

DFT vs Vmax (UGT1A1)

R2 = 0.34

Page 13: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Mechanistic Studies – Validation

• Simplification of the system

− Disregard the protein

− Simplify the UDP-GA

• Identification of a transition state

− Ab initio (B3LYP/SVP)

− Generalizable for N- and O-glucuronidation

• Validation of the transition state

− Experimental data (Vmax)

− 𝑘 = 𝐴𝑒−𝐸𝑎𝑅𝑇

− Data availability (O-glucuronidation)

− Shape specific active sites

− Noise in biological experiments

13

228 kJ mol−1

243 kJ mol−1

326 kJ mol−1

Non-Observed

Observed

Trifluoperazine

Page 14: Mechanism and Prediction of UGT Metabolism

From Ab Initio to Semi-empirical

Page 15: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

150.0

200.0

250.0

300.0

350.0

400.0

450.0

150.0 200.0 250.0 300.0 350.0 400.0 450.0

AM

1 (

kJ m

ol−1

)

B3LYP/SVP (kJ mol−1)

DFT vs Semi-Empirical

B3LYP/SVP and AM1 Correlation

• Things to consider

− AM1 is unable to detect weak interactions (H+ transfer)

− AM1 systematic errors

• Fragment calculations

− Aliphatic alcohols

− Phenols

− Carboxylic acids

− Primary amines

− Secondary amines

− Tertiary amines

15B3LYP/def2-SVP; AM1

R2 = 0.90

R2 = 0.61

Page 16: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

150.0

200.0

250.0

300.0

350.0

400.0

450.0

150.0 200.0 250.0 300.0 350.0 400.0 450.0

AM

1 (

kJ m

ol−1

)

B3LYP/SVP (kJ mol−1)

DFT vs Semi-Empirical (Corrected)

B3LYP/SVP and AM1 Correlation

• Things to consider

− AM1 is unable to detect weak interactions (H+ transfer)

− AM1 systematic errors

• Fragment calculations

− Aliphatic alcohols

− Phenols

− Carboxylic acids

− Primary amines

− Secondary amines

− Tertiary amines

• Corrections for each class

− R2 = 0.95

16

R2 = 0.95

B3LYP/def2-SVP; AM1

Page 17: Mechanism and Prediction of UGT Metabolism

QSAR Models

Page 18: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

QSAR Models

• Model order

− Isoform-specific site of metabolism models

− Isoform-specific substrate classification models

− General substrate classification models

• Descriptors

− Ea

− Site-specific descriptors

− Whole-molecule descriptors

• Methods

− Gaussian Processes

18

arom2 = 1

An example: atom-pair descriptor describing contribution of aromaticity.

O. Obrezanova and M. D. Segall, J. Chem. Inf. Model., 2010, 50, 6, 1053–1061

Page 19: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Model Kappa Accuracy

GPOPT 0.65 83%

Site of Metabolism Model of UGT1A1

• Compounds

− Only compounds which are glucuronidated

− Compounds with two or more sites

• Training and test sets

− Split by molecule

− 80:20 split

− 0.7 Tanimoto Coefficient

• Training set

− 79 molecules, 242 sites

− 120 glucuronidated and 122 not

• Test set

− 19 molecules, 52 sites

− 26 glucuronidated and 26 not

19

2

7

19

24

Page 20: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Substrate Classification Model of UGT1A1

• Compounds

− All compounds measured for UGT1A1

− Compounds with no site-specific information

• Training and test sets

− Split by molecule

− 80:20 split

− 0.7 Tanimoto Coefficient

• Training Set

− 337 molecules

− 171 glucuronidated and 166 not

• Test set

− 67 molecules

− 36 glucuronidated and 31 not

20

Model Kappa Accuracy

GPOPT 0.64 82%

6

6

30

25

Page 21: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Conclusions

• Mechanism of glucuronidation

− Simplified transition state (ab initio)

− Validated against experimental data

− Works with both N- and O-glucuronidation

− Scalable using semi-empirical calculations

• QSAR models

− Site of Metabolism Model

− Substrate Classification Model

− Ea and steric and orientation descriptors, whole molecule descriptors

• Future work

− Tackle isoforms 1A4, 1A9 and 2B7

21

Page 22: Mechanism and Prediction of UGT Metabolism

© 2019 Optibrium Ltd.

Thank You!

Matthew Segall

Peter Hunt

David Ponting

22

MOPAC 7